

ASERTN: A Dynamic Testing Tool For Java Based Software Agent

Suhelah Mohammed Sandokji, Mai Fadel, Fathy Essa

King AbdulAziz University, Faculty of Computing and Information Technology.

e-mail: ssandok99@gmail.com . mfadel3@yahoo.com . fathy55@yahoo.com

ABSTRACT

Testing is an essential activity in software

engineering. It is a process of observing the

execution of a software system to validate

whether it behaves as intended and identifies

errors that sometimes can result in large

financial losses or bodily harm.

Agents have been recognized as a promising

technology to build the next generation of

mobility services. They are increasingly used in

different application domains, where autonomy,

proactivity and cooperation are required.

Correspondingly, the demands on the quality of

the delivered agents are growing. However,

testing remains a challenging activity, in order

to ensure a satisfactory level of quality.

This research investigates the applicability of

temporal logic-based assertion language as a

means for detecting run-time errors of Java-

developed software agents. Part of this research

is enhancing an existing assertion language, and

developing a tool, called ASERTN, as proof of

concept. This paper describes the syntax and

semantic of the enhanced version of the

assertion language and introduces the

architecture and implementation of the

ASERTN tool.

Keywords: Agent, dynamic error, assertion

language, assertion statements, temporal logic,

dynamic testing.

i. Introduction:
 Assertions are a common feature of most

modern programming languages. They test the

program state at specific locations in the source

code. An assertion consists of a Boolean

expression that should be true if execution is to

proceed. If the expression is not true at runtime,

then the system will throw an error. Thus, an

assertion verify the programmers’ assumption

about the behavior of the program, increasing

confidence of the probability of the program of

being error-free or revealing the existence of

errors along with a description [9].

Assertions fall short regarding checking the

validity of concurrency. This gap is addressed

by combining the use of Temporal logic (TL),

which is a formalism used to describe how a

program state will change over time [8].

Modeling the future number of states as a linear

sequence of events is called linear Temporal

Logic (LTL), where as modeling these states as

a tree where each node branches out several

possibilities is called Branching Tree Logic

(BTL). LTL has been used in dynamic testing

of concurrent programs, an example can be

found in [5] in the AIDA dynamic analyzer.

AIDA is designed to test, debug, and specify

programs written in the Ada language. It

conducts the instrumentation of programs. It

also collects, organizes, and reports the results

of running the instrumented program. Our

approach is an extension of the work done in

[5]. We have defined an enhanced version of

AIDA's assertion language, in order to be

applicable for testing software agent.

Next, we present a brief review of previous

work. In Section iii, we describe the syntax of

the assertion language that has been developed

along with the defined operators. Then, we give

an example of the use of one of the language

© ICCIT 2012 343

mailto:ssandok99@gmail.com
mailto:mfadel3@yahoo.com
mailto:%20%20fathy55@yahoo.com

