- 17. Identify basic programming concepts.
- 18. Define the main steps involved in building and executing programs.
- 19. Describe the basic data structures: arrays, records, and linked lists.
- 20. Identify the applications of the basic data structures.

Practical Activity

Practical sessions are generally intended to support and extend the lecture material in one or both of the following ways depending on availability of resources:

- 1. Programming lab including an open book lab final exam (usually in the last week of the semester).
- 2. Tutorial sessions for homework problems.

Programming Lab Objectives

- 1. Provide practical exposure to following fundamental high-level programming concepts: constants, variables, data types, expressions, assignments, arrays, functions, and algorithmic constructs (sequence, decision and iteration).
- 2. Acquire basic program production skills (edit, compile, debug, trace).
- 3. Familiarize with the basics of a modern IDE.
- 4. Apply material from chapters 8,9,11.

Programming Lab Critical Learning Outcomes

Depending on availability of lab resources:

- 1. Use a modern programming environment to edit, compile, and run a small high-level program.
- 2. Use the programming environment to debug a high-level program.
- 3. Hand-trace a small high-level program.
- 4. Examine the following algorithms: bubble, insertion, and selection sorts, linear and binary searches.