
Towards Semantic Business Processes: Concepts, Methodology and

Implementation

Muhammad Ahtisham Aslam1, Sören Auer1,2 and Klaus-Peter Fähnrich1

1Betriebliche Informationssysteme, University of Leipzig, Germany
{aslam,auer,faehnrich}@informatik.uni-leipzig.de

2Computer and Information Science Department, University of Pensylvania, USA
auer@seas.upenn.edu

Abstract
The Business Process Execution Language for Web Services (BPEL4WS (shortly BPEL)) is one of the most
popular languages and a de facto standard for modelling business processes as Web services compositions.
However, it only allows using hard-coded syntactical interfaces for partners and the process itself, i.e. semantic
descriptions of services cannot be used within a process model. The lack of an ontological description of the
process elements cause limitations in the ways services are used within a process. A service providing the same
functionality as the one referenced in the process model, but via a different syntactical interface, cannot be used
instead. As a result, a process model cannot find an alternate service that performs the same functionality but
exposes a different interface, and can crash. Also, another drawback of such business processes is that they
expose syntactical interfaces and cannot be discovered and composed dynamically by other semantic enabled
systems slowing down the process of interaction between business partners. OWL-S on the other hand is a suite
of OWL ontologies and can be used to describe the compositions of Web services on the basis of matching
semantics as well as to expose semantically enriched interfaces of business processes as OWL-S composite
services. Consequently, translating BPEL process descriptions to the OWL-S suite of ontologies can overcome
the syntactical limitations of BPEL processes enabling them to 1) edit and model the composition of Web
services on the basis of matching semantics 2) provide semantically enriched information of business processes.
This semantically enriched information helps for dynamic and automated discovery, invocation and composition
of business processes as semantic Web services (SWSs). Describing an approach and its implementation that can
be used to enable business processes for semantic based dynamic discovery, invocation and composition by
translating BPEL process descriptions to the OWL-S suite of ontologies is the aim of this chapter.

1 SWS Technology Emergence and Current Status
Investigating capabilities and limitations of the semantic Web, semantic Web languages, SWSs and SWSs
languages that can be used to overcome syntactical limitations of process modeling languages (e.g. BPEL
(Francisco, et al., 2003; Matjaz, et. al. 2004)) is the preliminary step to understand the problem and to navigate
through possible solutions. Here, we describe that how different workflow modeling languages (e.g. BPEL) can
be used to model business processes as compositions of multiple services and what are limitations of such syntax
based Web services compositions. Then we describe the vision of the semantic Web and provide a short
overview of semantic Web languages (e.g. RDF (Graham & Jeremy, 2004), RDF-S (Dan, et al., 2004) and OWL
(Deborah, & Frank, 2004)). We discuss how OWL ontologies can be used to provide machine understandable
meanings of data. We also describe how the SWS community makes use of the semantic Web language (i.e.
OWL) to provide machine understandable meanings for Web services. We also shortly summarize technical
features of SWS languages (e.g. OWL-S (David et al., 2006), WSDL-S (Rama et al., 2006), WSMO (Sinuhe,
2005)) and compare them with respect to their semantic and workflow modeling capabilities. By analyzing and
comparing existing SWS languages we argue that the semantic and process modeling capabilities of OWL-S are
much better as compared with other SWS languages and it can be used to address the syntactical limitations of
traditional process modeling languages (e.g. BPEL) by translating BPEL process descriptions to the OWL-S
suite of ontologies.

1.1 Workflow Modeling
Different workflow languages like Web Services Flow Language (WSFL) (Frank, 2001), MS XLANG (Satish,
2001) and Business Process Execution Language for Web services (BPEL4WS, shortly (BPEL)) (Francisco, et
al., 2003; Matjaz, et al. 2004) have been developed to define workflows. WSFL from IBM addresses workflow
on two levels: 1) it takes a directed-graph model approach for defining and executing business processes 2) it

defines public interfaces that allows business processes to advertise as Web services (Jun et al. 2006). XLANG is
an XML based business process language that can be used to orchestrate Web services. An XLANG service
description is a WSDL (David, & Canyang, 2007) service description with an extension element that describes
the behaviour of the service as a part of a business process. MS XLANG is the language that is used in MS
BizTalk Server (Microsoft's business process modeling tool). However, processes modelled in BizTalk server
can easily be exported and imported to BPEL (an industry wide accepted standard for modeling business
processes).

1.1.1 BPEL4WS
BPEL4WS is a mature business process modeling language and is industry wide accepted standard for modeling
business processes as Web services compositions. A BPEL process consumes Web services operations to
perform a specific business task by defining control flow and data flow between these Web services operations
and can itself be exported as a Web service. BPEL supports the implementation of any kind of business process
in a very natural manner and has gradually become the basis of a standard for Web service description and
composition (Jun, et al., 2006). Several characteristics of BPEL make it language of choice for modeling
business processes. For example, BPEL is a language that combines workflow capabilities of IBM WSFL and
structural constructs of MS XLANG. Most of process modeling tools (e.g. MS BizTalk Server, IBM WebSphere,
SAP NetWeaver etc.) provides support for importing and exporting BPEL processes from one framework to
other. In presence of all these capabilities the BPEL has many shortcomings resulting in limitations for seamless
interoperability of business processes. These limitations can be addressed successfully by getting across
semantic gap between process modeling languages and upcoming semantic Web and SWSs languages. Figure 1
gives an overview of evolution and relation between these syntax and semantic based languages.

Figure 1. Evolution and relation between Web services, workflow, semantic Web and SWSs languages.

1.2 Semantic Web
Semantic Web is an extension to the current Web (WWW) to present more meaningful data that is easily and
efficiently process able and understandable for machines. It aims at providing common formats for exchanging
data and languages for describing relations between data objects. For this purpose different languages (e.g. RDF,
RDF-S and OWL) have been presented. Resource Description Framework (RDF) was developed to provide a
standard way to model, describe, and exchange information about resources. Providing information as RDF
triples was not enough for the vision of the semantic Web to become true. Consequently, further development
resulted in Resource Description Framework Schema (RDF-S). RDF-S is semantic extension to RDF, as it
enhances the information description capabilities of RDF by describing the groups of related resources and
relationship between these resources. Lacks of information expression capabilities of RDF-S (e.g. defining
properties of properties, necessary and sufficient conditions for class membership, or equivalence or disjoint of
class) resulted in more expressing semantic Web language (i.e. Web Ontology Language (OWL)). OWL is
intended to be used when the information contained in documents need to be processed by applications, as
opposed to the situations where the content only needs to be presented to humans (Deborah, & Frank, 2004, p.
1). Figure 2 (taken from Evren Sirin's talk "using Web ontologies for Web Services Composition") gives a very
interesting example of OWL ontology. This sample ontology defines relation of a student with his geographical
location, university, course etc.

 Figure 2. Relational semantics defined with OWL ontology.

1.3 Emerging SWSs Languages
Different efforts are going on to develop SWSs languages (e.g. WSDL-S, WSMO and OWL-S). All of these
SWSs languages working groups are using OWL to provide domain specific semantics of a Web service. Here
we provide short descriptions of these SWSs languages to compare their process modeling and semantic
capabilities and limitations.

1.3.1 WSDL-S
WSDL-S is a SWS development language that is being developed jointly by the University of Georgia and IBM.
WSDL-S extends WSDL operation and message tags by annotating them with domain ontologies to provide
semantics. In addition with extending WSDL, WSDL-S also adds new tags (i.e. LSDISExt:precondition and
LSDISExt:effect) to WSDL specifications to describe pre-conditions and effects of a Web service operation.
Figure 3 summarizes WSDL-S approach. Also, WSDL-S concepts are being fed to upcoming SWS language (i.e.
Semantic Annotation for WSDL (SAWSDL) (Joel, & Holger, 2006)) as a joint effort of WSDL-S and WSMO
working groups. Since, WSDL-S concepts are being implemented as major of the SAWSDL approach therefore,
we do not discuss it separately.

Figure 3. Overview of WSDL-S approach.

1.3.2 WSMO
Web Service Modeling Ontology (WSMO) is part of ongoing research to achieve dynamic, scalable and cost-
effective infrastructure for transaction and collaboration of business services. Web Service Modeling Language
(WSML) (Joel, et al., 2006) is formal language used to describe WSMO services. The Web Service Execution
Environment (WSMX) (Christoph, et al. 2005) is execution environment for dynamic discovery, invocation and
composition of WSMO services.

1.3.3 OWL-S
OWL-S is another language being developed to provide Web services semantics to facilitate dynamic and
automated discovery, invocation and composition of Web services. OWL-S is suite of OWL ontologies (i.e.
Profile, Process Model and Grounding ontologies). Profile ontology provides semantically enriched information
about Web service capabilities that helps in semantic based publishing and discovery of Web services. Process
Model ontology describes how to use a service and can be used for semantic based composition modeling of
complex services. Grounding ontology describes how to access a service. OWL-S uses OWL ontologies to
provide universally unique meaning of a service by annotating its inputs, outputs with domain ontologies and by
describing its pre-conditions and effects. Also, Process Model ontology has very expressive capabilities to model
composition of multiple Web services like workflow languages but based on their semantic descriptions. Two
major reasons for choosing OWL-S to semantically describe BPEL process models are: 1) Profile ontology can
be used to provide semantically enriched meaning of a process as OWL-S SWS 2) Process Model ontology of
OWL-S suite can be used to edit and model compositions of multiple SWSs (like a workflow language). Table 1
describes a comparison of these SWSs languages.

 Table 1. Comparison of SWSs languages

1.4 Problem Scenario
In order to understand the problems raised due to semantic limitations of BPEL we consider an example scenario
of Web services composition (i.e. a BPEL process). The example scenario helps to realize needs for establishing
correspondence between syntax based and semantic based compositions of Web services.
To keep the complexity of scenario within limitations we consider a simple Translator and Dictionary process
example (‘.bpel’ file of the process model and ‘.owl’ files of mapped OWL-S service and atomic processes are
available with the tool download). The Translator and Dictionary process is modeled in MS BizTalk Server as
syntax-based composition of two services (i.e. the Translator service and the Dictionary service). The Translator
service is a Web service that can be used to translate a string from one language to another supported language
by using its operation getTranslation. The Dictionary service is a Web service that can be used to get the
meaning of an English word in English (i.e. only the English language is supported by the Dictionary service) by
using its operation getMeaning. Now we define two problem scenarios (tasks) that cannot be performed by
anyone of these two services (i.e. neither by the Translator Service nor by the Dictionary Service). To perform
these tasks we need to model a BPEL process as composition of these two Web services. The two scenarios are:

• How we can get the meaning of a German word in English? Because the Dictionary service supports only

the meaning of an English word in English, not the meaning of a German word in English.
• How we can get the meaning of a German word in German? Because the Translator service only translates

string from one language to other language (not give the meaning of a word) and the Dictionary service
gives the meaning of only English words in English.

In both of above scenarios none of a single Web service is able to perform required task. As a solution we model
a BPEL process as composition of these services. In first problem scenario we can define a workflow (Figure 4)
as composition of the Translator service and the Dictionary service and it consists of the following steps.

• Process accepts input string (i.e. German word) from the user (a user may be a human user or another Web

service).
• Transfers this string as an input to the Translator service to translate the string from German to English.
• Output of the Translator service (i.e. the English translation of the input string) is given as an input to the

Dictionary service.
• As a last step of the process, the Dictionary service returns the meaning of the input string.

Figure 4. Sequence of services in process according to first scenario.

Similarly task pointed in second scenario (i.e. getting meaning of the German word in German) can be
accomplished by enhancing process model of Web services composition by following steps (as shown in Figure
5):

Figure 5. Sequence of services in process according to second scenario.

• Process accepts the input string (i.e. the German word) from the user.
• Transfers this string as an input to the Translator service to translate the string from German to English.
• The output of the Translator service (i.e. the English translation of the input string) is given as an input to

the Dictionary service.
• The output of the Dictionary service (i.e. the meaning of the word) is given as input to the Translator

service to translate it back from English to German.
• As a last step of the process the Translator service translates the string (i.e. the meaning of the word) back

from English to German.

If we analyze the process (i.e. composition of Web services) more at semantic level then following issues are
identified:

• When the process is exported as a Web service, it has same syntactical limitations as traditional WSDL

services resulting in clampdown of process for dynamic discovery, invocation and composition.
• If we want to extend the process (as shown in Figure 4) in a semantic environment to perform the task

pointed in second scenario (as shown in Figure 5) then we will realize that:
o Web services with in composition provide no information for semantic based editing and modeling of

process. For example, consider the input message (as shown in Example 1) required by the Translator
service. This message provides no semantic information about message parts (i.e. inputString,
inputLanguage and outputLanguage).

o Semantic limitations of Web services with in process restrict to dynamically discover and compose (on
the basis of matching semantics) a semantic Web service (e.g. semantic based Translator service).

Example 1: A sample WSDL syntax based message.

<wsdl:message name="TranslatorRequest">
 <wsdl:part name="inputString" type="s:string" />
 <wsdl:part name="inputLanguage" type="s:string" />
 <wsdl:part name="outputLanguage" type="s:string" />
</wsdl:message>

Bridging the semantic gap between syntax based and semantic based composition of Web services can help to
address above discussed problems. Example 2 shows annotation of input message part (i.e. inputLanguage) with
ontology concept (i.e. SupportedLanguage) defined in appropriate domain ontology. Providing such semantic
information can help to:

• Provide machine understandable meaning of the process as an OWL-S composite service that can help in

dynamic discovery, invocation and composition of BPEL process as an OWL-S semantic Web service.
• Shift the process from syntax-based to semantic based composition providing semantically enriched

information about each service involved with in composition.
• Edit and model the composition on the basis of matching semantics rather than relying just on syntactical

information.
• Defining abstract process (i.e. semantics for a required service) with in composition to dynamically discover

and compose a service on the basis of matching semantics defined in abstract process (according to
approach discussed in (Evren, et al., 2005)).

• Using an AI planning for automated composition by mapping OWL-S composite and atomic processes to
tasks and operators of the planning language (e.g. HTN planning).

Example 2: Semantically enriched message part.

<process:Input rdf:ID="inputLanguage">
 <process:parameterType rdf:datatype="&xsd;#anyURI">
 &this;#SupportedLanguage </process:parameterType>
 <rdfs:label>Input Language</rdfs:label>
</process:Input>

In above discussed simple but extensive example we have just considered inputs and outputs of different services
for the purpose of composition. In actual scenarios we can use other information related to a Web service (e.g.
service provider, response time, geographical location, defining data flow and control flow between services
etc.) for more accurate and efficient composition of Web services. One thing to note at this point is that we have
provided two example scenarios for modeling processes as Web services compositions. For first scenario we
modeled a BPEL process in MS BizTalk Server as syntax based composition of two services (i.e. the Translator
service and the Dictionary service). Then we highlighted limitations of such syntax based process modeling. In
Sections 2 and 3 we provide detail analysis of BPEL process models and OWL-S SWSs and then on the basis of
this analysis we define specifications to translate BPEL process descriptions to OWL-S suite of ontologies. In
remaining chapter we use this BPEL process (please note that the ‘.bpel’ of the process and the ‘.owl’ files of
mapped OWL-S service and atomic processes are available with the tool download) to provide some code
samples of mapping specifications. In evaluation section (i.e. Section 5), the whole BPEL process is mapped to
OWL-S service. Then we use this mapped OWL-S service to answer the problem questions (i.e. 1) semantic
based composition editing and modeling of services 2) semantically enriched interface of the BPEL process as
OWL-S SWS). In our evaluation section we enhance the Process Model ontology of mapped OWL-S service in
semantic environment (e.g. Protégé (John, et al., 2003) (OWL-S Editor) (Daniel, et al., 2005) or even with
simple editor like Notepad to develop SWS for scenario 2.

2 Mapping Constraints
Mapping constraints create the base of mapping specifications that can be used to translate BPEL process
descriptions to OWL-S suite of ontologies by providing analysis of BPEL process model, OWL-S SWS and their
components. Here, we do not mean to provide complete description of these languages as their specifications
cover them very well but analytical description of BPEL process models and OWL-S suite of ontologies helps to
categorize and to specify that which part of a process should be translated to which construct of OWL-S.

2.1 Analysis of BPEL Process Model
A BPEL process model is set of primitive and structured activities. Here, we describe functional behavior of
BPEL processes and its activities on the basis of which we have defined specifications for translating BPEL
process descriptions to OWL-S SWS.

2.1.1 Processes
BPEL allows describing business processes in two ways:

Executable Processes are used to model interaction between participants (i.e. Web services) of a business
process. The logic and state of the process determine the nature and sequence of Web services interactions
conducted at each business partner, and thus the interaction protocol (Francisco, et al., 2003, p. 9).

Abstract Processes are not typically executable. They are meant to couple Web service interface definition with
behavioral specifications that can be used to both constrain the implementation of business roles and define in
precise terms the behavior that each party in a business protocol can expect from others (Matjaz, et al., 2004, p.
51).

2.1.2 Primitive Activities
A BPEL process is a set of activities (i.e. primitive and structured activities). Primitive activities are used to
perform basic tasks of a process. Some important BPEL primitive activities and their behavioral characteristics
are as under:

Invoke (<invoke>) activity is used to invoke a Web service by sending it some input message and probably by
receiving some output message (Example 3 shows a sample invoke activity).

Example 3: invoke activity that performs a Web service operation (i.e. getTranslation operation).

<invoke partnerLink="To_Translation_Service_Port_1"

 portType="q2:TranslatorPortType" operation="getTr anslation"
 inputVariable="Message1_To_Translation_Service"
 outputVariable="Message1_From_Translation_Service" />

In a BPEL process invoke activity can have dual behavior i.e. 1) it can be used to perform a Web service
operation 2) it can be used to create the interface of an asynchronous BPEL process. Due to its different
behavior, mapping of invoke activity to OWL-S also varies (as discussed in Sections 3.1.2 and 3.2).

Receive (<receive>) activity receives a message from a Web service probably to start a process. Like an invoke
activity, a receive activity also has dual behavior i.e. 1) it can act as an interface of a BPEL process 2) it can be
used to receive a message from a Web service in response to an asynchronous Web service operation.

Reply (<reply>) activity is used to reply a message in response to a receive activity.

Assignment (<assign>) activity is used to assign values to message variables. In a BPEL process the
Assignment activity can be used to initialize input message of a Web service operation.

Primitive activities are used to perform small tasks within a complex process. Different activities can be
combined and their order of execution can be defined by using some structured activities.

2.1.3 Structured Activities
BPEL structured activities are used to define control flow between sub primitive and structured activities within
a process. Some major structured activities with their functional behavior are described below.

Sequence (<sequence>) activity is used to define a set of activities that are performed in a sequence. A
sequence completes when its last child activity has been performed.

Flow (<flow>) activity is used to invoke child activities concurrently. A flow activity completes when all
activities within flow activity have completed.

Switch-Case (<switch>) activity is used to perform child activities under some conditional aspects. A switch
activity can have one or more conditional branches defined by case elements. A case may have optional
otherwise branch that is performed when condition statement becomes false.

While (<while>) is used to repeatedly perform a child activity. The child activity under the while activity is
performed as long as the while condition holds true.

2.1.4 Some Additional Activities

Wait (<wait>) activity is used to wait for some time.

Throw (<throw>) activity is used for throwing exceptions and indicating faults.

Terminate (<terminate>) activity is used to terminate a process.

In this section we provided an analytical description of BPEL processes and functional constraints of BPEL
activities. With such analytical description of functional constraints of BPEL processes and activities it becomes
easier to specify which BPEL activities have matching behavior to which OWL-S control construct (CC). Table
2 summarizes BPEL process components with their short functional description.

 Table 2. BPEL process model activities and their description.

2.2 Analysis of OWL-S Ontologies
OWL-S is being developed to describe SWSs. Here, we analyze functional constraints of OWL-S suite and its
CCs that can help to specify that which activities of BPEL process can be mapped to which OWL-S CCs on the
basis of their matching behavior.

2.2.1 OWL-S: Technical Overview
OWL-S is suite of OWL ontologies (i.e. Profile, Process Model and Grounding ontologies). Profile ontology is
used to present semantically enriched interface of a process as SWS. Like a workflow language, the Process
Model ontology can be used to model composition of multiple atomic and composite processes (services). Figure
6 provides an overview of the OWL-S Process Model ontology and relation of Process class with child classes.
Grounding ontology describes about how to access a service by specifying message formats, protocols and
transport. Service ontology actually acts as an organizer for the Profile, Process Model and Grounding
ontologies. Each OWL-S service has one instance of the Service class.

2.2.2 Processes
OWL-S has three kinds of processes:

Atomic Processes are processes that can be executed in a single step and they have no sub process. Atomic
processes are somehow like Web services operations that can be performed in a single step. An atomic process is
described by using the class AtomicProcess that is sub class of the Process class (as shown in Figure 6).

Simple Processes may be used either to provide a view of (a specialized way of using) some atomic process, or
a simplified representation of some composite process (for purposes of planning and reasoning) (David, et al.,
2006, p. 1).

Composite Processes are processes that can have sub atomic and composite processes. Like a workflow
modeling language we can use composite processes to model the composition of multiple atomic and composite
processes. A composite process allows defining the control flow between sub atomic and composite processes by
using different CCs (e.g. sequence, split, split-join etc.).

 Figure 6. OWL-S Process Model ontology.

2.2.3 Control Constructs
OWL-S defines a number of CCs that can be used to define control flow between sub processes within Process
Model ontology. Discussion about capabilities of these CCs is necessary because they are used to define control
flow of BPEL process in the mapped OWL-S service. OWL-S defines many CCs that can be used to define
control flow between process components. Some of these CCs are as under:

Sequence, components of a Sequence CC are performed in a sequence. Sequence class is sub class of the class
ControlConstruct (as shown in sample code below) that holds other CCs as sub classes.

<owl:Class rdf:ID="Sequence">
 <rdfs:subClassOf rdf:resource="#ControlConstruct"/>

 </rdfs:subClassOf>
</owl:Class>

Split CC is used to perform its process components in parallel. Also, a Split CC completes as soon as all of its
process components are scheduled for execution.

Split-Join CC is used for concurrent execution of process components with partial synchronization. A Split-Join
CC completes as soon as all of its process components have been performed.

If-Then-Else CC can be used to implement conditional behavior within a composite process. It has three
properties (i.e. ifCondition, then, else). Execution of then and else depends on either ifCondition is true or false
(i.e. if ifCondition is true, perform then part and if ifCondition is false then perform else).

Repeat-While CC is used to repeatedly perform its process component (i.e. as long as Repeat-While condition
holds true). Condition is important part of OWL-S CCs (e.g. If-Then-Else, Repeat-While, Repeat-Until CCs).

2.2.4 Some Other OWL-S Mapping Constraints
Some other constraints that need to be addressed while mapping BPEL process descriptions to OWL-S are
follows:

Performing Individual Processes: As, we discussed before that a composite process is composition of sub
atomic and composite processes, these processes can be performed by using Perform CC. The invocation of a
process is indicated by an instance of the Perform class. The process property of class Perform indicates the
process to be performed.

Condition Expressions: We use SWRL expressions (Peter, 2005) being the most recommended standard to
define conditions for OWL-S CCs. OWL-S API (Evren, 2006) (developed by MIDSWAP Lab) also supports the
execution of conditions defined by using the SWRL.

Data Flow and Parameter Binding: OWL-S defines a class Binding to define the data flow between process
components. For sure, OWL-S specifications allow defining hard code values (e.g. 5, "hello" etc.) as inputs of
processes.

Parameters and Results: In OWL-S specifications, parameters are what we call variables in general
programming languages. Parameters can be expressed by using Parameter class.

Table 3 summarizes important components of OWL-S ontology and their analytical description. On the basis of
capabilities and limitations of components of BPEL and OWL-S we define mapping specifications for shifting
BPEL process model to OWL-S ontology.

 Table 3. Analytical description of OWL-S ontology constructs.

3 Translating BPEL Process Descriptions to OWL-S
In the previous section (i.e. Section 2), we have discussed in detail the process modeling and semantic
capabilities of BPEL and OWL-S and components of these languages. Since, OWL-S is suite of three ontologies
(i.e. Profile, Process Model and Grounding ontologies) therefore, we describe the translation (mapping) of
BPEL process descriptions to OWL-S at three levels (i.e. mapping of BPEL process model to OWL-S Profile,
Process Model and Grounding ontologies). Table 4 describes specifications for translating the BPEL process
descriptions to the OWL-S suite of ontologies. The specifications are described from an abstract level to
components and activities level translation of BPEL processes to OWL-S services. Areas, where direct mapping
is not possible or requires some additional manual interaction, are discussed as well.
Algorithm 1 provides a very abstract level description of the recursive algorithm used for extracting OWL-S
suite from BPEL process model. It traverses bpel file objects tree as long as activities in bpel file come to end.
An important thing to note is that when an activity is not an I/O primitive activity then it is mapped to perform

CC (as described in Lines 13 and 33 of Algorithm 1) to perform relevant atomic process. In next section we
describe the extraction of Process Model ontology from BPEL process model.

 Table 4. Summary of BPEL4WS to OWL-S mapping specifications.

3.1 Translation to the OWL-S Process Model Ontology
In this section we describe how a BPEL process model is translated to OWL-S Process Model ontology with
defined control and data flow. The Process Model mapping specifications describe about how BPEL primitive
and structured activities, condition statements, input/output data passing between different activities, variables
etc. are mapped to OWL-S relevant control constructs, SWRL expression and parameters respectively. We also
provide some code example for translating BPEL activities to OWL-S CCs. The whole process of translating
BPEL process descriptions to OWL-S depends on functional characteristics of BPEL and OWL-S components as
described in Section 2. During discussion of mapping specifications we consider the translation of BPEL process
(i.e. Translator and Dictionary process), which is mapped to OWL-S service. Now we describe step by step
translation of BPEL process components to OWL-S CCs.

3.1.1 Process Level Translation
BPEL process model is composition of multiple Web services with defined control and data flow to perform a
joint task. A BPEL process model is mapped to OWL-S composite process that is a semantic based composition
of multiple atomic and composite processes. Control flow and data flow between different Web services
operations within a BPEL process model is mapped to control flow and data flow between process components
of an OWL-S composite service. An atomic process within a composite process is result of mapping of a Web
service operation that is performed by a primitive activity.
We discussed before that a BPEL process is composition of Web services operations that can be performed in a
single step. Each Web service operation within a BPEL process is mapped to OWL-S atomic process. The
mapped atomic process consists of complete OWL-S suite of ontologies (i.e. Profile, Process Model and
Grounding ontologies). Since, actual tasks within a BPEL process are performed by executing Web services
operations therefore, a successful and useful mapping of BPEL process model to OWL-S is intimately dependent
on translation of each Web service operation involved within a BPEL process to OWL-S atomic process. As
much as we know, till now there has no effort been done which supports the mapping of a BPEL process to
OWL-S and translates Web services operations within a BPEL process to OWL-S atomic processes. Each Web
service operation that is mapped to OWL-S atomic process is stored in a separate OWL file. We can also execute
these atomic processes by using some execution engines (e.g. OWL-S API) or by importing and executing them
in SWS development tool (e.g. Protégé (OWL-S Editor)). Since, our sample Translator and Dictionary process
uses two Web services operations (i.e. getTranslation and getMeaning, as discussed in Section 1.4) therefore,

these Web services operations are translated to OWL-S atomic processes (i.e. getTranslationProcess and
getMeaningProcess) and stored in getTranslation.owl and getMeaning.owl files (as shown in Figure 7).

Figure 7. Web services operations translated to OWL-S atomic processes and stored in owl files.

 Algorithm 1. Abstract level definition of the mapping algorithm.

3.1.2 Activities and Control Flow Translation
In above section we have discussed that a Web service operation performed by a primitive activity is mapped to
OWL-S atomic process. The primitive activity that performs Web service operation is mapped to OWL-S
Perform CC to perform that atomic process within mapped OWL-S service. For example, consider the primitive
activity (i.e. invoke activity as shown in Example 3) that is used to perform Web service operation (i.e.
getTranslation operation). The primitive activity is mapped to Perform CC to perform the process
getTranslationProcess (as shown in sample code below), where getTranslationProcess is atomic process created
in above step (i.e. in Section 3.1.1) and stored in getTranslation.owl file.

<process:process rdf:resource="http://examples.org/DummyURI.owl#

 getTranslationProcess"/>

BPEL structured activities are used to define control flow between different child activities. OWL-S provides a
number of CCs (e.g. Sequence, Split etc.) for defining control flow between sub processes. Table 4 summarizes
mapping of BPEL structured activities to OWL-S control constructs on the basis of their matching behavior and
Algorithm 2 shows it from implementation perspective. We have discussed in detail about behavioral
characteristics of BPEL structured activities and OWL-S CCs in Sections 2.1.3 and 2.2.3. As sample of mapping
these activities we describe translation of two structured activities (i.e. flow and switch) to relevant OWL-S CCs
(i.e. Split-Join and sequence of (If-Then-Else CCs)), because mapping of these activities is a little bit tricky.
Synchronization between sub activities and process components is important for defining workflows especially
in complex business process integration scenarios. BPEL uses flow activity to define synchronization between
sub activities. "A Flow activity completes when all of its sub activities are completed". OWL-S CCs (e.g. Split
and Split-Join) are used to define synchronization between process components. "Split-Join completes when all
of its process component have completed". Where as capabilities of Split are expressed as: "Split completes as
soon as all of its process components have been scheduled for execution". Even though both Split and Split-Join
CCs are used for concurrent execution of process components but we map Flow activity to Split-Join CC on the
basis of their matching functional characteristics.
A switch structured is used to describe conditional behavior and consists of a list of one or more conditional
branches defined by using case elements. A case element has a condition attribute to define its condition and can
have an optional otherwise branch that is executed if the case condition becomes false. The switch activity is
mapped to Sequence CC of OWL-S specifications and each case element listed under switch activity is mapped
to If-Then-Else CC. The condition part of each case element is translated to SWRL expression (discussed in next
section (i.e. Section 3.1.3)) and otherwise part of case element is mapped to else part of If-Then-Else CC. We
can summarize mapping of switch activity with a list of case elements as a sequence (Sequence) of If-Then-Else
CCs mapped with optional else part.

 Algorithm 2. Algorithm to map BPEL structured activities to OWL-S CCs.

3.1.3 Translating Condition Statements
Conditions are an important part of BPEL activities (e.g. switch, while etc.) and OWL-S CCs (e.g. If-Then-Else,
Repeat-While etc.). Without mapping condition statements, only mapping of BPEL activities, which depend on
conditions to OWL-S CCs, is not useful. We have implemented an efficient algorithm that translates condition
statements of BPEL activities to SWRL expressions, which are supported by OWL-S specifications. The mapped
SWRL expressions can be parsed and executed by execution engines (e.g. OWL-S API). Mapping condition
statements to SWRL expressions supports all conditional operators (e.g. =, !=, <, >, <=, >= etc.).
Before having a look on condition mapping algorithm we should keep in mind that complexity of condition
statement could vary with complexity of message variables being used in condition statement. The reason is that

extracting message variables and message parts of an atomic process that are being used in condition statement is
a complex task (specially when message variables of complex message types are involved). However, our
algorithm handles the translation of condition statements to SWRL expressions carefully and efficiently by
parsing and tracking the list of atomic processes and their messages.

 Algorithm 3. Algorithm to parse condition statement and to generate SWRL expression.

3.1.4 Data Flow Translation
We can discuss the mapping of data flow at two levels; one is defining the input and output of a composite
process, second level of defining data flow is passing messages between process components within composite
process.
To understand data flow definition at first level, consider a BPEL process in which receive activity receives a
message from outer world to start a process. Such a message that initiates a process is defined as input message
of composite process within Process Model ontology of mapped OWL-S service. In remaining process this
message is referred as a message that belongs to the process TheParentPerform to pass this message as input of
sub processes. Similarly such situations are also possible in which the output of a sub process becomes the
output of composite process. In such cases output of sub process is also defined as output of the process
TheParentPerform.

We have also discussed that within a BPEL process model output of one Web service operation can be used as
input of the next Web service operation. During the mapping of a BPEL process to OWL-S service, passing
messages (data) between sub processes within a composite process is addressed by using the Binding class.

3.1.5 Variables and Local Parameters Translation
Like traditional programming languages, we can also declare variables in a BPEL process to store and share data
between different activities within a process. Such variables within a BPEL process are mapped to local
variables (LocalVariable) in OWL-S. These local variables can be used to manipulate and share data between
sub atomic and composite processes. In Section 3.1.3 we have discussed that how these local variables are used
in condition expressions to store and compare values with inputs and outputs of sub atomic and composite
processes. Local variables can be connected with processes by using the property hasLocal of the process class.
In this section we have discussed the translation of BPEL process model to OWL-S Process Model ontology. We
also described the logic of translation of BPEL activities to OWL-S CCs on the basis of mapping constraints
(discussed in Section 2). Translation of some of BPEL activities to OWL-S CCs have been described with their
syntactical information to describe mapping aspects with respect to their language specifications. The mapped
Process Model ontology can be used to further edit and model more complex service in a semantic environment
(as discussed in Section 5 to evaluate our approach).

3.2 Translation to the OWL-S Profile Ontology
Profile ontology is used to describe semantically enriched information about capabilities of a BPEL process
when it is mapped to OWL-S SWS. Semantically enriched information about capabilities of mapped process
model is described as 1) inputs required by the service 2) outputs generated by the service 3) pre-conditions
required to use a service 4) effects that service produces in surrounding world after its execution. Semantics of
these input/output parameters, pre-conditions and effects are provided by annotating them with domain
ontologies defined in a separate OWL files. Since, BPEL process model provide no semantic information about a
process therefore, Profile ontology parameters of mapped OWL-S service are automatically annotated by the
mapping tool with dummy ontological concepts (URIs). Since, semantic information about a service capabilities
can vary from user to user therefore, it is not possible to judge a user requirements automatically, generate
domain ontologies according to that requirements and annotate Profile ontology parameters with these
ontological concepts. Maximum process of generating Profile ontology from BPEL process is performed
automatically by the mapping tool but end user can provide semantic of mapped service by annotating
input/output parameters of Profile ontology with their required domain concepts. In short user can finish up with
Profile ontology by performing following tasks:

• Developing domain ontologies by using some semantic Web development tool (e.g. Protégé)
• Annotating Profile ontology parameters with these domain ontology concepts

How to develop domain ontologies (Matthew, et al., 2004), edit (annotate) and develop SWSs with these domain
ontologies ? is not the aim of this chapter. However, we explain these topics to some extent so that the end user
can get more clear idea and understanding that how the Profile ontology of mapped OWL-S service can be
extended to enable it for semantic based publishing and discovering. First of all, we describe the criteria that we
used to extract Profile ontology from a BPEL process model and automatic annotation of Profile ontology
parameters with domain ontologies. Then we give a short description about how to develop domain ontologies
and to use them to annotate Profile ontology parameters of mapped OWL-S service.

3.2.1 Extracting the Profile Ontology
In Section 2.1.2 we have already discussed that primitive activities can have dual behavior i.e. 1) to perform a
Web service operation 2) to interact with the outer world (i.e. to create interface of BPEL process model).
Mapping of primitive activities that are used to perform Web services operations with in a BPEL process has
been discussed in Sections 3.1.1 and 3.1.2. Here we are concerned with primitive activities that can be used to
create interface of BPEL process model. A BPEL process can have one or more primitive activities (i.e. receive,
invoke and reply activities) that are used to interact with outer world. Such activities are declared as input/output
(I/O) activities during mapping process. Message parts of these I/O activities messages are used to create input
and output parameters of Profile ontology. For example if a process has a receive activity which receives a
message from user to start a process then this activity is declared as I/O activity and message parts of the
message received by this activity are used to create input parameters of resulting Profile ontology. Again,
consider a primitive activity (<receive>) and its message that has three parts (i.e. input_Lang, output_Lang and
input_Str). These message parts are used to create input parameters of resulting Profile ontology (as shown in
Example 6).

Example 6: An example of mapped Profile ontology.

<profile:Profile rdf:about="&bpel4ws2owls#TestProfile">
 <profile:textDescription>This Profile is created by BPEL2OWLS Tool
 </profile:textDescription>
 <profile:hasInput>
 <process:Input rdf:about="&bpel4ws2owls#inputLang">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/
 XMLSchema#anyURI">http://www.w3.org/2001/XMLSch ema#string
 </process:parameterType>
 </process:Input>
 </profile:hasInput>
 <profile:hasInput>
 ……………. other input/output parameters
 <rdfs:label>BPEL2OWLS Profile </rdfs:label>
 <service:presentedBy rdf:resource="&bpel4ws2owls#TestService"/>
</profile:Profile>

A reply activity can be used to send a message to the outer world in response to a receive activity. If a receive
activity has corresponding reply activity then message parts of the message of such reply activity are used to
create output parameters of mapped Profile ontology. It is also possible that a receive activity does not has
corresponding reply activity (as you can see in some example BPEL processes available with the tool download)
and BPEL process uses invoke activity to send output message to the outer world. In this case message of the
invoke activity is parsed in corresponding WSDL file and its message parts are used to create output parameters
of Profile ontology of mapped OWL-S service.
Till now we have explained that how primitive activities are used to create interface of BPEL process and how
we use message parts of these I/O activities to create input/output parameters of mapped Profile ontology. One
more thing that needs to be clarified is that among dual role of BPEL primitive activities how a primitive activity
is declared as an I/O activity so that its message parts can be used to create input/output parameters of Profile
ontology. The criteria that we used for this purpose is that if a receive activity is being used as an initial activity
to start a BPEL process (i.e. its createInstance attribute value is yes) and its portType and operation is supported
by BPEL's corresponding WSDL file.
Another important issue that we think is important to highlight is that mapping specifications support to extract
one Profile ontology from a BPEL process model. It means that if a BPEL process has multiple activities that act
as an interface of BPEL process, only two primitive activities are declared as I/O activities and their message
parts are used to create input/output parameters of Profile ontology of mapped OWL-S service. Even though
OWL-S specifications support to create multiple Profile ontologies for one Process Model ontology but
automatic translation of BPEL process description to OWL-S extracts one Profile ontology for one Process
Model.

3.2.2 Developing and Annotating with Domain Ontologies
In above section we have described in detail that how a Profile ontology is extracted from a BPEL process
model. If we have a deeper look at sample Profile ontology (i.e. Example 6) provided in previous section, we see
that input/output parameters of Profile ontology are mapped to dummy URIs. These dummy URIs need to be
replaced with user defined domain ontological concepts (Figure 8 provides a conceptual view of annotating
Profile ontology parameters with domain ontological concepts). Such annotation provides semantically enriched
information about capabilities of mapped OWL-S service.

 Figure 8. Annotating Profile ontology with domain ontology concepts.

Since, OWL-S specifications support to define multiple Profile ontologies for one Process Model ontology
therefore, end user can also define multiple Profile ontologies for one Process Model ontology to provide
different meaning of same service. Protégé with its OWL plugin (Holger, et al., 2004) is an ideal framework for
developing domain ontologies. Example 7 gives a simple example of the Language ontology that we can use to
annotate input/output parameters of our mapped Profile ontology to provide semantically enriched information
of mapped service.

Example 7: Sample Language ontology.

<owl:Class rdf:ID="SupportedLanguage">
 <rdfs:comment>Languages supported by the BabelFish translator is an
 enumerated set of the following languages </rdfs:comment>
 <owl:oneOf rdf:parseType="Collection">
 <factbook:Language rdf:about="&factbook;# English"/>
 <factbook:Language rdf:about="&factbook;# Dutch"/>
 <factbook:Language rdf:about="&factbook;# French"/>
 <factbook:Language rdf:about="&factbook;# German"/>

 (list of supported languages)
 </owl:oneOf
</owl:Class>

Suppose that above language ontology is defined at following address http:www.uni-leipzig.de/Languages.owl}
(shortly &languages). Then the mapped Profile ontology (as show in Example 7) after annotating its parameters
with domain ontology looks like:

<profile:Profile rdf:about="&bpel4ws2owls#TestProfile">
 <profile:textDescription>This Profile is created by BPEL2OWLS Tool
 </profile:textDescription>
 <profile:hasInput>
 <process:Input rdf:about="&bpel4ws2owls#inputLang">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/
 XMLSchema#anyURI">&languages#SupportedL anguage
 </process:parameterType>
 </process:Input>
 </profile:hasInput>

 (other input/output parameters)

 <rdfs:label>BPEL2OWLS Profile </rdfs:label>
 <service:presentedBy rdf:resource="&bpel4ws2owls#TestService"/>
</profile:Profile>

3.3 Translation to the OWL-S Grounding Ontology
Grounding ontology of the OWL-S service describes that how to access a service. Access details include
information about protocol, transport and message formats. These details enable Grounding to provide concrete
level specifications needed to access a service. Concrete level definition of inputs/outputs of atomic processes in
some transmittable format is provided in Grounding ontology. For this purpose original WSDL services are
referred in Grounding to access real implementation of services. When a Web service operation within a BPEL
process is mapped to OWL-S atomic process (during the mapping process) then input/output messages of Web
service operation are defined as set of inputs/outputs in the Grounding ontology of that atomic process. That's
why in Section 3.2 we have seen that input/output messages of I/O activities are not directly used to create
Profile ontology but message parts of these messages are used as set of inputs and outputs in Profile ontology.
These inputs and outputs when annotated with domain ontologies provide Web service semantics.
Now about types of messages and message parts: there are two possibilities 1) the message is a complex message
of some OWL class type 2) the message is of other usual data type (e.g. string, int etc.). In first case, in which
message is of some OWL class type; we need to give the definition of OWL class. This definition can be given
within the same document1 or can be defined in separate OWL file and can be referred in the type parameter2.
An OWL-S service Grounding is an instance of the Grounding class that has sub class WsdlGrounding. Each
WsdlGrounding class contains a list of WsdlAtomicProcessGrounding instances that refers to Grounding of
atomic process. WsdlAtomicProcessGrounding has properties (e.g. wsdlInputMessage, wsdlInput,
wsdlOutputMessage, wsdlOutput etc.). wsdlInputMessage and wsdlOutputMessage objects contain mapping

1 http://www.mindswap.org/2004/owl-s/services.html BabelFish Translator service provide such example.
2 http://www.mindswap.org/2004/owl-s/services.html Find Cheaper Book Price service provide such example.

pairs for message part of WSDL input/output messages and is presented by using an instance of
WsdlInputMessageMap. If a message part is of some complex type (e.g. some OWL class) then XSLT
Transformation property gives an XSLT script that generates message part from an instance of the atomic
process. As an example consider grounding (as shown in sample code below) of mapped OWL-S service.

<grounding:WsdlGrounding rdf:about= "&bpel4ws2owls#TestGrounding">
 <service:supportedBy rdf:resource="&bpel4ws2owls#TestService"/>
 <grounding:hasAtomicProcessGrounding rdf:resource= "&dummyURI

 #getTranslationAtomicProcessGrounding"/>
 <grounding:hasAtomicProcessGrounding rdf:resource="&dummyURI
 #getMeaningAtomicProcessGrounding"/>
</grounding:WsdlGrounding>

The above sample code gives an example of grounding of mapped composite service (i.e. TestService), where
getTranslationAtomicProcessGrounding and getMeaningAtomicProcessGrounding are groundinges of two
atomic processes which are sub processes within mapped composite process. The sample ontology shown below
gives an example of Grounding ontology of the getTranslation atomic process.

<grounding:WsdlGrounding rdf:about= "#getTranslationGrounding">
 <grounding:hasAtomicProcessGrounding>
 <grounding:WsdlAtomicProcessGrounding

rdf:ID= "getTranslationAtomicProcessGrounding"/>
 </grounding:hasAtomicProcessGrounding>
 <service:supportedBy rdf:resource= "#getTranslationService"/>
</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:about=

"#getTranslationAtomicProcessGrounding">
 <grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/
 XMLSchema#anyURI">&wsdlFileAddress#Tra nslatorRequest
 </grounding:wsdlInputMessage>
 <grounding:wsdlInput>
 <grounding:WsdlInputMessageMap>
 <grounding:wsdlMessagePart "http://www.w3.org/2001/
 XMLSchema#anyURI">&wsdlFileAddress#i nputLanguage
 </grounding:wsdlMessagePart>
 <grounding:owlsParameter

 rdf:resource="&wsdlFileAddress#inputLanguage"/>
 </grounding:WsdlInputMessageMap>
 </grounding:wsdlInput>

 (other message parts)
</grounding:WsdlAtomicProcessGrounding>

3.4 Implementation of Mapping Tool
We have developed a tool (i.e. BPEL4WS 2 OWL-S Mapping Tool3) that can be used to translate existing BPEL
processes to OWL-S services. The BPEL4WS 2 OWL-S Mapping Tool is an open source project and was
downloaded hundreds of times since it was uploaded to the open source platform, sourceforge.net.

3.4.1 Architecture
The overall architecture of BPEL4WS 2 OWL-S Mapping Tool consists of three components (i.e. WSDL Parser,
BPEL Parser and OWL-S Mapper) as shown in Figure 9. As it is clear from name that WSDL Parser parses each
WSDL file with in mapping project and creates their object view. An important feature of WSDL Parser is that it
extracts information about operations supported by a Web services and send this information to OWL-S Mapper
which maps each Web service operation to OWL-S atomic process. OWL-S Mapperwrites the generated OWL-S
atomic process in a separate OWL file and saves it in atomic processes directory of mapping project. Atomic
processes are used with in composite process to define control flow and data flow between process components
with in OWL-S composite service.
BPEL Parser traverse through BPEL file and creates object view of process activities. It parses primitive
activities and sends information about these activities to OWL-S Mapper. Before sending information to OWL-S
Mapper, BPEL parser declares either a primitive activity is an I/O activity or not (Section 3.2 describes in detail
that how an activity is declared and mapped as an I/O activity). If a primitive activity is declared as an I/O
activity then OWL-S Mapper uses message part of this activity to create input/output of parameters of composite

3 http://bpel4ws2owls.sourceforge.net/

process, which ultimately are used to create the Profile ontology parameters. If a primitive activity is non I/O
activity then OWL-S Mapper maps it to Perform CC to perform related atomic process. Also, BPEL Parser
parses structured activities in defined control flow of input BPEL process and sends information about these
activities to OWL-S Mapper. The OWL-S Mapper translates them to relevant CCs to define control flow of
mapped OWL-S composite service. If BPEL Parser sends information to OWL-S Mapper about Assignment
activity then OWL-S Mapper traverse through list of existing atomic processes to extract input/output parameters
of these processes matches them with <copy> <to> and <copy> <from> parameters of Assignment activity and
creates data flow between relevant process components. If a BPEL parser comes to some conditional structured
activity then it simply sends condition string to OWL-S Mapper which creates corresponding SWRL expression
(as explained in Section 3.1.3).

 Figure 9. Architecture of the mapping tool.

OWL-S Mapper is actually responsible for writing resulting OWL-S service according to defined mapping
specifications. It uses OWL-S API developed by mindswap lab to write resulting OWL-S composite service.
OWL-S API is set of APIs that can be used to read, write and execute OWL-S services. Since, OWL-S API uses
a third party reasoner (e.g. “jena reasoner”) to reason the mapped OWL-S ontology therefore, our tool also uses
jena reasoner (as default reasoner) for such reasoning purposes.

3.4.2 User Interface
The BPEL4WS 2 OWL-S Mapping Tool provides very easy to use interface which consists of four major parts
(i.e. Project Explorer, Object Explorer, Content Window and Output Window) and a Toolbar and Menu bar as
shown in Figure 10.
Project Explorer can be used to see project input and output files. Object Explorer provides object view of input
BPEL and WSDL files. Content window can be used to see contents of any of the input/output files. User can
simply select a file in the Project Explorer to see its contents in the Content Window. Output of different actions
performed (e.g. Validate, Build and Map) can be seen in the Output Window.

 Figure 10. Overview of BPEL4WS 2 OWL-S Mapping Tool.

4 Some Related Efforts
Translating business process descriptions to OWL-S ontologies is a very efficient and cost effective way for
enabling business processes with semantics to facilitate dynamic interaction between business partners. Several
efforts have already been done to address semantic limitations of process modeling languages. For example, the
METEOR-S research group at LSDIS Lab is working on extending BPEL with semantics to compose Web
services (i.e. WSDL-S services) on the basis of matching semantics. The work discussed in (Jun et al., 2005;
Jun., et al., 2006) describes mapping from the BPEL process model to the OWL-S Process Model ontology. We
have already criticized and pointed out drawbacks of this approach in our work (Aslam., et al., 2006). Major
drawback of (Jun., et al., 2006; Jun., et al., 2005) are that they do not support the Profile and the Grounding
ontologies. Without Profile ontology, mapped BPEL process model cannot be advertised as OWL-S SWS that
can be discovered, invoked and composed dynamically. The work discussed in (Massimo, et al., 2003) describes
a good effort to map WSDL services to DAML-S (updated to OWL-S) services. Another effort (Gayathri, &
Yun-Heh, 2007) has been done by a joint group of researchers from University of Edinburgh and School of
Informatics to address semantic limitations of Fundamental Business Process Modeling Language (FBPML) by
mapping it to OWL-S Process Model ontology. The work discussed in (Gayathri, & Yun-Heh, 2007) also
supports only the mapping of FBPML process model to OWL-S Process Model ontology. It does not support the
mapping of Profile and Grounding ontologies. The work discussed in (Gayathri, & Yun-Heh, 2007) has almost
same limitations as that of the work discussed in (Jun., et al. 2006; Jun., et al., 2007) and which I have criticized
in (Aslam, et al., 2006). We can summarize that there have many efforts been done to address semantic
limitations of process modeling languages by mapping them to semantic Web services languages (e.g. OWL-S)
but none of these efforts provide expressive and consistent solution. Our work is unique with these aspects that it
supports the translation (mapping) of BPEL process descriptions to complete OWL-S suite of ontologies. We
have also well addressed the issues (e.g. conditions mapping, support for complex messages, mapping of atomic
processes etc.) that have not been addressed by any other research group. Another uniqueness of our work is that
we use the OWL-S API in our tool to write the resulting OWL-S service due to which it becomes consistent with
execution engines like OWL-S API and semantic Web services development tools (e.g. OWL-S Editor).

5 Evaluation and Benefits
In Section 1.4 we defined two problem scenarios (as show in Figures 4 and 5) and modeled a BPEL process to
perform the task defined in first scenario. Then we analyzed BPEL and OWL-S processes and their components
and defined step-by-step translation of BPEL process to OWL-S SWS. Till the end of Section 3 the whole BPEL
process was mapped to OWL-S SWS with each Web service operation within the BPEL process model mapped
to OWL-S atomic process.
As a first step to edit the mapped OWL-S service to perform the task defined in second scenario, we replace the
dummy URIs of input and output parameters of mapped atomic and composite processes with domain ontologies
(as discussed in Section 3.2). The annotation of input/output parameters can be performed by opening the
mapped OWL files (atomic and composite processes) in OWL-S Editor (even though some compatibility issues
between OWL-S Editor and our tool still need to be addressed (as discussed in Section 7) or in any other editor
(e.g. Notepad). Annotating input/output parameters helps to edit and extend the composite process by defining
data flow between sub processes on the basis of matching semantics. Mapped OWL-S service takes inputStr,
inputLang and outputLang as inputs of the OWL-S service. The first atomic process (i.e. getTranslationProcess)
translates the input string from input language (i.e. German) to output language (i.e. English) and the second
atomic process (i.e. getMeaningProcess) provides the meaning of the input word in English language. From here
we start editing the mapped service and add one more atomic process (i.e. getTranslationProcess) within the
Sequence CC of composite process. This atomic process is used to perform the additional task defined in second
scenario (Figure 5) (i.e. to translate the meaning of the German word back from English to German). For this
purpose we define data flow for this newly added atomic process. The getTranslationProcess process takes as
input inputLang (English), outputLang (German) and inputStr (output of atomic process getMeaningProcess).
The data flow can be defined by using data binding between atomic processes (as discussed in Section 3.1.4) on
the basis of matching semantics.
In Section 1.4 we defined two major problems of BPEL process i.e. 1) syntactical interface 2) syntax based
process modeling (i.e. Web services composition). We address both of these problems by translating BPEL
process description to OWL-S suite of ontologies. Profile ontology of mapped OWL-S service provides
semantically enriched information about BPEL process as OWL-S SWS and can be used for dynamic discovery,
invocation and composition of BPEL process as OWL-S service. Mapped OWL-S service is edited and extended
on the basis of matching semantic information rather than syntactical information to solve the problem defined in
second scenario (Figure 5).
With rapidly growing rate of e-shopping it is becoming very important for e-business companies to keep their
business processes and services alive with upcoming semantic Web technologies. Adding semantics will enable
existing business processes and services for dynamic co-operation with business partners and for dynamic

interaction with end users. But developing semantic enabled business process and services from scratch is very
cost effective and time consuming for both small and large organizations. Our approach provides a very efficient
solution with respect to cost and time to shift existing business process to SWSs enabling them for dynamic
discovery, invocation and composition by other semantic enabled systems.

6 Risk Assessment
Although, the goal of automatic translation is very appealing, the intention may have some threats in practice for
a number of reasons. One of them is that OWL-S with respect to its process modeling capabilities is not as
mature as BPEL and mapping of block-structured BPEL to semantic based OWL-S is challenging. Since, BPEL
is syntactical language and provides no semantic information therefore, in case of complex business processes it
may become hectic to develop domain ontologies from scratch and to annotate mapped OWL-S service
parameters with these domain ontologies.
Modelling BPEL processes is supported by a number of tools (e.g MS BizTalk Server, IBM WebSphere, SAP
NetWeaver etc.). None of them support to export BPEL processes to OWL-S services. Integrating BPEL4WS 2
OWL-S Mapping Tool with these process modeling tools can enable them to export BPEL processes as OWL-S
services but this functionality will neither be fully automated nor support full semantics. End user involvements
will be necessary to add meaning to each of the process elements and make them machine-readable and
understandable. In addition, it will also allow for reasoning on the process descriptions as OWL-S services.
Once, BPEL process description is translated to OWL-S SWS and edited to add semantics, will make it possible
to automatically assign Web service (or their composition) to each task and to generate final service that can be
deployed and executed by SWS execution engines (e.g. OWL-S API).

7 Conclusion and Future Aspects
In this chapter we presented an approach leading towards semantic business processes. The rationale of the
proposed approach is that traditional business processes (e.g. BPEL processes) due to their semantic limitations
cannot be dynamically discovered, invoked and composed by other semantic enabled systems. These semantic
limitations slow down the process of integration between business partners, business organizations and
customers. The methodology that we have used to address these limitations of process modeling languages
consists of mapping constraints and specifications that can be used to translate BPEL process descriptions into
the OWL-S suite of ontologies (i.e. OWL-S SWSs). The resulting OWL-S services are semantic based
compositions of child services and expose semantically enriched interfaces. As a result they can be edited on the
basis of matching semantics to model more complex services as well as they can be dynamically discovered,
composed and invoked by other semantic enabled systems. We have implemented our approach as a mapping
tool (i.e. BPEL4WS 2 OWL-S Mapping Tool) that can be used to map (translate) BPEL process descriptions to
OWL-S services. Critical issues (e.g. the mapping of condition statements, translating activities to CCs,
generating Profile ontology parameter from complex I/O messages etc.) have been addressed by implementing
efficient parsing and mapping algorithms. Since, OWL-S is not as mature as BPEL, we have also highlighted
different areas where direct translation of activities is not supported. In order to implement direct translation of
BPEL activities (e.g. terminate, fault handling etc.) we need more consistent specifications of OWL-S to address
these issues. We have also highlighted areas where users are required to manually provide additional information
(e.g. changing the parameter type by annotating input/output parameters with suitable domain ontologies etc.).
In order to perform more consistent mapping, it will be necessary to address limitations that we have described
in our mapping specifications with upcoming OWL-S specifications. Also, making the tool part of some larger
framework like Protégé will support end users more efficiently. Such an effort will enable the end user to
directly import BPEL processes as OWL-S services in Protégé (OWL-S Editor). It will also become easier for
end users to develop domain ontologies and to annotate Profile ontology parameters with domain concepts while
working in the same framework (i.e. Protégé).

Acknowledgement: Funding for the research leading to these findings is partially provided by the Higher
Education Commission (HEC) of Pakistan under the scheme “Partial Support Scholarship for PhD Studies
Abroad”.

References
Aslam, M., A., Sören, A., Jun S., & Michael, H. (2006). Expressing business process model as owl-s ontologies.

In E. Dustdar (Ed.), Proceedings of the 2nd International Workshop on Grid and Peer-to-Peer based
Workflows in conjunction with the 4th International Conference on Business Process Management, Volume
4103/2006 (pp. 400-415), Vienna, Austria.

Christoph, B., Emilia, C., Dieter, F., Juan, M., G., Armin, H., Thomas, H., Michael, K., Adrian, M., Matthew M.,
Eyal, O., Brahmananda, S., Ioan, T., Jana, V., Tomas, V., Maciej, Z., & Michal, Z. (2005). Web service
execution environment (wsmx). Retrieved April 20, 2007, from http://www.w3.org/Submission/WSMX/.

Dan, B., & Ramanathan, V., G. (2004). RDF vocabulary description language 1.0: RDF schema. Retrieved May
22, 2007, from http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

Daniel, E., Grit, D., David, M., Fred, G., John, K., Shahin, S., & Rukman, S. (2005). The OWL-S editor - A
development tool for semantic web services. In A. Gomez-Perez & J. Euzenat (Eds.), The Semantic Web
Research and Applications, 2nd European Semantic Web Conference, Volume 3532 (pp. 78-92), Heraklion,
Crete, Greece.

David, B., & Canyang, K., L. (2006). Web services description language (WSDL) version 2.0 part 0: Primer.
Retrieved April 11, 2007, from http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327.

David, M., Mark, B., Jerry H., Ora, L., Drew, M., Sheila, M., Srini, N., Massimo, P., Bijan, P., Terry, P., Evren,
S., Naveen, S., & Katia, S. (2006). Owl-s: Semantic markup for web services. Retrieved April 10, 2007,
from http://www.ai.sri.com/daml/services/owl-s/1.2/overview/, March 2006.

Deborah, L., M., & Frank V., H. (2004). OWL web ontology language overview. World Wide Web Consortium,
Recommendation REC-owl-features. Retrieved April 17, 2006, from http://www.w3.org/TR/owl-features/.

Evren, S. (2006). Owl-s api. Retrieved May 20, 2006, from http://www.mindswap.org/2004/owl-s/api/.
Evren, S., Bijan P., & James, H. (2005). Template-based composition of semantic web services. In AAAI Fall

Symposium on Agents and the Semantic Web, Virginia, USA.
Francisco, C., Hitesh, D., Yaron, G., Johannes, K., Frank L., Kevin, L., Dieter, R., Doug, S., Siebel, S., Satish,

T., Ivana, T., Sanjiva, W. (2003). Business process execution language for web services. Retireved April 5,
2007, from ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf.

Frank, L. (2001). Web Services Flow Language (WSFL 1.0). Retrieved May 14, 2007, from http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Gayathri, N, & Yun-Heh, C. (2007). Translating Fundamental Business Process Modelling Language to the
Web Services Ontology through Lightweight Mapping. IET Software Journal, 1, 1-17.

Graham, K., & Jeremy, J., C. (2004). Resource description framework (RDF): Concepts and abstract syntax.
Retrieved May 25, 2007, from http://www.w3.org/TR/2004/REC-rdf-concepts-20040210.

Holger, K., Mark, A., M., & Alan, L., R. (2004). Editing description logic ontologies with the Protégé OWL
plugin. In V. Haarslev and R. Moller (Eds.), Proceedings of the 2004 International Workshop on Description
Logics volume 104 (pp. 70-78), Whistler, BC, Canada.

Joel, F., & Holger, L. (2006). Semantic annotations for wsdl. Retrieved March 26, 2007, from
http://www.w3.org/TR/2006/WD-sawsdl-20060928/

John, H., G., Mark, A., M., Ray, W., F., William, E., G., Monica, C., Henrik, E., Natalya, F., N., & Samson, W.,
T., (2003). The evolution of protégé: an environment for knowledge-based systems development.
International Journal of Human-Computer Studies, 58(1), 89-123.

Jos D., B., Holger, L., Axel, P., Dieter, F. (2006). The web service modeling language WSML: An overview. In
Y. Sure and J. Domingue (Eds.), Proceedings of 3rd European Semantic Web Conference, Volume 4011 (pp.
590-604). Budava, Montenegro.

Jun, S., Georg, G., Yun, Y., Markus, S., Michael, S., Thomas, R. (2006). Analysis of business process
integration in web service context. In The International Journal of Grid Computing: Theory, Models and
Applications, 23 (3), 283-294.

Jun, S., Yun, Y., Chengang, W., & Chuan, Z. (2005). From BPEL4WS to OWL-S: Integrating E-business
process descriptions. In Proceedings of International Conference on Services Computing, Volume 1 (pp.
181-190), Orland, FL, USA.

Massimo, P., Naveen, S., Katia, P., S., & Takuya, N. (2003). Towards a semantic choreography of web services:
From WSDL to DAML-S. In L. Zhang, (Ed.), Proceedings of the International Conference on Web
Services (pp. 22-26), Las Vegas, Nevada, USA.

Matjaz J., Benny, M., & Poornachandra, S. (2004). Business Process Execution Language for Web Services: A
Practical Guide to Orchestrating Web Services Using BPEL4WS. PACKT Publishing.

Matthew, H., Holger, K., Alan, R., Robert, S., & Chris, W. (2004). A practical guide to building owl ontologies
using the protege-owl plugin and co-ode tools edition 1.0. The University of Manchister, UK and Stanford
University, USA.

Nigel, S., Tim, B., & Wendy, H. (2006). The semantic web revisited. IEEE Intelligent Systems, 21(3),96-101.
Peter, F., P., (2005). Requirements and non-requirements for a semantic web rule language. In Rule Languages

for Interoperability.
Satish, T. (2001). XLANG web services for business process design. Retrieved May 1st, 2007, from

http://xml.coverpages.org/XLANG-C-200106.html
Sinuhe, A., Emilia, C., John, D., Cristina, F., Dieter, F., Birgitta, K., Holger, L., Axel, P., & Michael, S. Web

service modeling ontology primer (2005). Retrieved June 12, 2007, from
http://www.w3.org/Submission/WSMO-primer/.

