Towar ds Semantic Business Processes. Concepts, M ethodology and

I mplementation

Muhammad Ahtisham AslamSoren Auer?and Klaus-Peter Fahnrith

Betriebliche Informationssysteme, University of LeipZBgrmany
{aslam,auer,faehnrich}@informatik.uni-leipzig.de
2Computer and Information Science Department, University o$yheania, USA
auer@seas.upenn.edu

Abstract

The Business Process Execution Language for Web Se(BB&d_ 4WS (shortly BPEL)) is one of the most
popular languages and a de facto standard for modelling buginessses as Web services compositions.
However, it only allows using hard-coded syntactictrifaces for partners and the process itself, i.easém
descriptions of services cannot be used within a provestl. The lack of an ontological description of the
process elements cause limitations in the ways s=rape used within a process. A service providing the sam
functionality as the one referenced in the process Inbdevia a different syntactical interface, canbetused
instead. As a result, a process model cannot find amale service that performs the same functionality b
exposes a different interface, and can crash. Alsahanarawback of such business processes is that they
expose syntactical interfaces and cannot be discowrédcomposed dynamically by other semantic enabled
systems slowing down the process of interaction betWesiness partners. OWL-S on the other hand is a suite
of OWL ontologies and can be used to describe the cotigrassiof Web services on the basis of matching
semantics as well as to expose semantically enriahiedfaces of business processes as OWL-S composite
services. Consequently, translating BPEL process déasodpto the OWL-S suite of ontologies can overcome
the syntactical limitations of BPEL processes emaplihem to 1) edit and model the composition of Web
services on the basis of matching semantics 2) pregdentically enriched information of business progesse
This semantically enriched information helps for dyimamd automated discovery, invocation and composition
of business processes as semantic Web services (SBSs}ibing an approach and its implementation that can
be used to enable business processes for semantic dhasmdic discovery, invocation and composition by
translating BPEL process descriptions to the OWL-S sifibatologies is the aim of this chapter.

1 SWSTechnology Emergence and Current Status

Investigating capabilities and limitations of the setmalVeb, semantic Web languages, SWSs and SWSs
languages that can be used to overcome syntacticahfionis of process modeling languages (e.g. BPEL
(Francisco, et al., 2003; Matjaz, et. al. 2004)) is themnehry step to understand the problem and to navigate
through possible solutions. Here, we describe that hiferett workflow modeling languages (e.g. BPEL) can
be used to model business processes as compositionstiplersérvices and what are limitations of such syntax
based Web services compositions. Then we describeisian of the semantic Web and provide a short
overview of semantic Web languages (e.g. RDF (Grahalar&my, 2004), RDF-S (Dan, et al., 2004) and OWL
(Deborah, & Frank, 2004)). We discuss how OWL ontologieshmused to provide machine understandable
meanings of data. We also describe how the SWS comynmmaikes use of the semantic Web language (i.e.
OWL) to provide machine understandable meanings for Welices. We also shortly summarize technical
features of SWS languages (e.g. OWL-S (David et al., 2006pPM6S (Rama et al., 2006), WSMO (Sinuhe,
2005)) and compare them with respect to their semantievaridlow modeling capabilities. By analyzing and
comparing existing SWS languages we argue that the seraadtjgrocess modeling capabilities of OWL-S are
much better as compared with other SWS languages aml litecased to address the syntactical limitations of
traditional process modeling languages (e.g. BPEL) by lating BPEL process descriptions to the OWL-S
suite of ontologies.

1.1 Workflow Modeling

Different workflow languages like Web Services Flow Larggu@/VSFL) (Frank, 2001), MS XLANG (Satish,
2001) and Business Process Execution Language for Web s€BRIEEAWS, shortly (BPEL)) (Francisco, et
al., 2003; Matjaz, et al. 2004) have been developed to debridlows. WSFL from IBM addresses workflow
on two levels: 1) it takes a directed-graph model appréactefining and executing business processes 2) it

defines public interfaces that allows business procéssebrertise as Web services (Jun et al. 2006). XLANG is
an XML based business process language that can be usethéstrate Web services. An XLANG service
description is a WSDL (David, & Canyang, 2007) service dason with an extension element that describes
the behaviour of the service as a part of a busineses. MS XLANG is the language that is used in MS
BizTalk Server (Microsoft's business process modelig).tblowever, processes modelled in BizTalk server
can easily be exported and imported to BPEL (an industdg wiccepted standard for modeling business
processes).

111 BPEL4WS

BPEL4WS is a mature business process modeling languageiaddssy wide accepted standard for modeling
business processes as Web services compositions. A BRIEess consumes Web services operations to
perform a specific business task by defining control ff'owd data flow between these Web services operations
and can itself be exported as a Web service. BPEL suppertmplementation of any kind of business process
in a very natural manner and has gradually become thie bha standard for Web service description and
composition (Jun, et al., 2006). Several characterisfid8PEL make it language of choice for modeling
business processes. For example, BPEL is a languageothbines workflow capabilities of IBM WSFL and
structural constructs of MS XLANG. Most of process mutgtools (e.g. MS BizTalk Server, IBM WebSphere,
SAP NetWeaver etc.) provides support for importing and exgpBPEL processes from one framework to
other. In presence of all these capabilities the BRESL.many shortcomings resulting in limitations famnskess
interoperability of business processes. These liritatican be addressed successfully by getting across
semantic gap between process modeling languages and upcemiagtic Web and SWSs languages. Figure 1
gives an overview of evolution and relation betweers¢hsyntax and semantic based languages.

r Semantic Web
¢! IWLS X Services

,,,,,.,v‘,,,,?u ,,,,,,,,,,

i RDF _=>» RDF Sclhema L> OWL, SemanticWeb

IBM WSFL Workflow as

Web services
Composition

\‘

/’

A

Evolution Flow
SMETHIH

WSDL SOAP UDDI Web Services
Figure 1. Evolution and relation between Web serviceskflow, semantic Web and SWSs languages.

1.2 Semantic Web

Semantic Web is an extension to the current Web (WWAdresent more meaningful data that is easily and
efficiently process able and understandable for machihasns at providing common formats for exchanging
data and languages for describing relations between datasolf-or this purpose different languages (e.g. RDF,
RDF-S and OWL) have been presented. Resource Descriptionework (RDF) was developed to provide a
standard way to model, describe, and exchange informationt resources. Providing information as RDF
triples was not enough for the vision of the semawtab to become true. Consequently, further development
resulted in Resource Description Framework Schema (RDIRISF-S is semantic extension to RDF, as it
enhances the information description capabilities BFRby describing the groups of related resources and
relationship between these resources. Lacks of infiomaxpression capabilities of RDF-S (e.g. defining
properties of properties, necessary and sufficient camditior class membership, or equivalence or disjoint of
class) resulted in more expressing semantic Web languageA(eb Ontology Language (OWL)). OWL is
intended to be used when the information contained iirdents need to be processed by applications, as
opposed to the situations where the content only neeols presented to humans (Deborah, & Frank, 2004, p.
1). Figure 2 (taken from Evren Sirin's talk "using Web togies for Web Services Composition") gives a very
interesting example of OWL ontology. This sample ontoldgfines relation of a student with his geographical
location, university, course etc.

r””””"”;ﬁ!!-lﬂ?!‘![******************* ' University

<class ID="Student>

i <class ID="University
“property ID="name"/>
property ID="location™/> |

| <property ID="name"/> 3 ;
‘ <property ID="stuclies At/ > m——teeeee !
i <property ID="livesIn*/> ‘ i
| </class>

i <class ID="GradStudent*>
i <subclassOf ID="Student*/>
‘ <property ID="interestedIn"/>

i </class>

| <class ID="PhD$tudent ">

I <subclassOf I=*“GradStudent™/> |

i </class> ! '

| <class ID="Mgsptudent > {1 <property ID="street/> |
i <subclassOf JD=“GradStudent*/> | “pProperty ID:“G!W“"’> |
i <Jelass> i <property IDZ€zipCode /> |
e B i </class> |

G . l Postal Information
eography

<class ID="ZipCode"~
i <class ID="Country*> . S 1pi-ods

| <property ID="capital/>
; </class> .
! <class ID="State*>
i <class ID="City“>

) Research
 <class ID="R

dide from Evren's talk “Using Web Ontologies for Web Services Com position®
Figure 2. Relational semantics defined withiLGpntology.

1.3 Emerging SWSsLanguages

Different efforts are going on to develop SWSs languages (WSDL-S, WSMO and OWL-S). All of these
SWSs languages working groups are using OWL to provide domaiifisgemantics of a Web service. Here
we provide short descriptions of these SWSs languagesnmpare their process modeling and semantic
capabilities and limitations.

131 WSDL-S

WSDL-S is a SWS development language that is being dedejoipely by the University of Georgia and IBM.
WSDL-S extends WSDloperation and message tags by annotating them with domain ontologies to plevi
semantics. In addition with extending WSDL, WSDL-S aslols new tags (i.&.SDISExt: precondition and
LSDISExt:effect) to WSDL specifications to describe pre-conditions affdcts of a Web service operation.
Figure 3 summarizes WSDL-S approach. Also, WSDL-S coneeptBeing fed to upcoming SWS language (i.e.
Semantic Annotation for WSDL (SAWSDL) (Joel, & Hotg@006)) as a joint effort of WSDL-S and WSMO
working groups. Since, WSDL-S concepts are being implerdergenajor of the SAWSDL approach therefore,
we do not discuss it separately.

, JEECSLLL I
—>:B
! -7 - .. .

)
(V4 ’ ~ :
v
‘.(\O
Cmreres

ottom Level >
+
B

é inputs and outputs
=3 operations

— = references/uses

Figure 3. Overview of WSDL-S approach.

132 WSMO

Web Service Modeling Ontology (WSMO) is part of ongoiegearch to achieve dynamic, scalable and cost-
effective infrastructure for transaction and collatmn of business services. Web Service Modeling Language
(WSML) (Joel, et al., 2006) is formal language used to desahiSMO services. The Web Service Execution
Environment (WSMX) (Christoph, et al. 2005) is executiomionment for dynamic discovery, invocation and
composition of WSMO services.

133 OWL-S

OWL-S is another language being developed to provide Welicagrsemantics to facilitate dynamic and
automated discovery, invocation and composition of Waeices. OWL-S is suite of OWL ontologies (i.e.
Profile, Process Model andGrounding ontologies) Profile ontology provides semantically enriched information
about Web service capabilities that helps in semdased publishing and discovery of Web serviBescess
Model ontology describes how to use a service and can befarsedmantic based composition modeling of
complex servicesGrounding ontology describes how to access a service. OWL-S Q8L ontologies to
provide universally unique meaning of a service by animgidtts inputs, outputs with domain ontologies and by
describing itgpre-conditions andeffects. Also, Process Model ontology has very expressive capabilities to model
composition of multiple Web services like workflow languaget based on their semantic descriptions. Two
major reasons for choosing OWL-S to semantically iles@BPEL process models are:Prpfile ontology can

be used to provide semantically enriched meaning of eegsags OWL-S SWS Process Model ontology of
OWL-S suite can be used to edit and model compositiomaitiiple SWSs (like a workflow language). Table 1
describes a comparison of these SWSs languages.

OWL-S WSMO WSDL-S
Language OWL WSML WSDL with
Extensions
Multiple Interfaces Supported Supported Not supported
Service Semantics Supported Supported Not Supported
Operational Semantics | Not Supported Not Supported Supported
Composite Processes | Supported Not Supported BPEL with
Extensions
Simple Process Supported Not Supported Not. Supported
Invocation WSDL Grounding WSDL Grounding WSDL
Development Tool Available Available Available

Table 1. Comparison of SWSs languages

1.4 Problem Scenario

In order to understand the problems raised due to sentiamtitions of BPEL we consider an example scenario
of Web services composition (i.e. a BPEL processg &tample scenario helps to realize needs for estagish
correspondence between syntax based and semantic bageasitions of Web services.

To keep the complexity of scenario within limitations wonsider a simpl€randator and Dictionary process
example (‘.bpel’ file of the process model and ‘.owledilof mapped OWL-S service aammic processes are
available with the tool download). THeandator and Dictionary process is modeled in MS BizTalk Server as
syntax-based composition of two services (i.e Titamdator service and thBictionary service). Thdrandator
service is a Web service that can be used to tranalatring from one language to another supported language
by using its operatiomgetTrandation. The Dictionary service is a Web service that can be used to get the
meaning of arEnglish word inEnglish (i.e. only theEnglish language is supported by tBéctionary service) by
using its operatiorgetMeaning. Now we define two problem scenarios (tasks) thahoaibe performed by
anyone of these two services (i.e. neither byTitamsator Service nor by th®ictionary Service). To perform
these tasks we need to model a BPEL process as compagithese two Web services. The two scenarias are

* How we can get the meaning ofagrman word in English? Because thBictionary service supports only
the meaning of aknglish word in English, not the meaning of @erman word in English.

* How we can get the meaning ofz@rman word in German? Because th&randator service only translates
string from one language to other language (not give ttenimg of a word) and thBictionary service
gives the meaning of onBnglish words inEnglish.

In both of above scenarios none of a single Weliceis able to perform required task. As a solution wdeho
a BPEL process as composition of these servicessinpfoblem scenario we can define a workflow (Figure 4)
as composition of th&randator service and thBictionary service and it consists of the following steps.

* Process accepts input string (iGerman word) from the user (a user may be a human user onemdteb
service).

» Transfers this string as an input to #frandator service to translate the string frdderman to English.

* Output of theTrandator service (i.e. th&nglish translation of the input string) is given as an inpuht®
Dictionary service.

* As alast step of the process, hietionary service returns the meaning of the input string.

Progess Interface Translator Service Dictionary Service

German: Siring

Garman: String

|
|
| German to English: String
|
|

Erglish I'\.ie'anlr\g: String

e e T e e e

|
I
|
i |
I
I
|
L
|
I
|
I
|
I
|
=
I
I
|

Figure 4. Sequence of services in process accordingttedanario.

Similarly task pointed in second scenario (i.e. gettingaming of theGerman word in German) can be
accomplished by enhancing process model of Web semacegosition by following steps (as shown in Figure
5):

Progess nterface Translator Service Digtipnary Servige Translator Service

German: String

i

German: Stiing

German to English: String

=

Meaning in English: String
=t |

Engligh to German: String

Y | .

——_p——————————— 7 ———

Figure 5. Sequence of services in process according tedsscenario.

* Process accepts the input string (i.e.@eeman word) from the user.

+ Transfers this string as an input to firandator service to translate the string frdberman to English.

* The output of thdrandator service (i.e. th&nglish translation of the input string) is given as an input to
theDictionary service.

» The output of theDictionary service (i.e. the meaning of the word) is given gmiirto theTrandator
service to translate it back froEnglish to German.

* As a last step of the process ffrandator service translates the string (i.e. the meaning®fiord) back
from English to German.

If we analyze the process (i.e. composition of Wehises) more at semantic level then following issaes
identified:

* When the process is exported as a Web service, itdms syntactical limitations as traditional WSDL
services resulting in clampdown of process for dynamimgery, invocation and composition.

» If we want to extend the process (as shown in Figur@ 4) semantic environment to perform the task
pointed in second scenario (as shown in Figure 5) themilveealize that:

0 Web services with in composition provide no informatfor semantic based editing and modeling of
process. For example, consider the input message (as gh&xyample 1) required by thand ator
service. This message provides no semantic informadioout message parts (i.mputString,
inputLanguage andoutputLanguage).

0 Semantic limitations of Web services with in processtrict to dynamically discover and compose (on
the basis of matching semantics) a semantic Weliceqie.g. semantic basé&dandator service).

Example 1: A sample WSDL syntax based message.

<wsdl : nessage name="TranslatorRequest">
<wsdl : part name="inputString" type="s:string" />
<wsdl : part name="inputLanguage" type="s:string" />
<wsdl : part name="outputLanguage" type="s:string" />
</ wsdl : nessage>

Bridging the semantic gap between syntax based and serbaséid composition of Web services can help to
address above discussed problems. Example 2 shows annofatipat message part (i.i@putLanguage) with
ontology concept (i.eSupportedLanguage) defined in appropriate domain ontology. Providing such séima
information can help to:

* Provide machine understandable meaning of the process @WL-S composite service that can help in
dynamic discovery, invocation and composition of BPEhcpss as an OWL-S semantic Web service.

« Shift the process from syntax-based to semantic basetposition providing semantically enriched
information about each service involved with in conitpms.

« Edit and model the composition on the basis of match@mgantics rather than relying just on syntactical
information.

» Defining abstract process (i.e. semantics for a red@eevice) with in composition to dynamically discover
and compose a service on the basis of matching sermashfined in abstract process (according to
approach discussed in (Evren, et al., 2005)).

* Using an Al planning for automated composition by mappingL€E8Momposite andatomic processes to
tasks and operators of the planning language (e.g. HTN pighni

Example 2: Semantically enriched message part.

<process: | nput rdf:ID="inputLanguage">
<process: par anet er Type rdf:datatype="&xsd;#anyURI">
&this;#SupportedLanguage </ process: par anet er Type>
<r df s: | abel >Input Language</rdfs:label>

</ process: | nput >

In above discussed simple but extensive example we hawmpstered inputs and outputs of different services
for the purpose of composition. In actual scenariosaveuse other information related to a Web serviae (e.
service provider, response time, geographical locatidining data flow and control flow between services
etc.) for more accurate and efficient composition ebvgervicesOne thing to note at this point is that we have
provided two example scenarios for modeling processes ass@fgices compositions. For first scenario we
modeled a BPEL process in MS BizTalk Server as syntsgdbeomposition of two services (i.e. ffrandator
service and th®ictionary service). Then we highlighted limitations of such aynbased process modeling. In
Sections 2 and 3 we provide detail analysis of BPEL psateslels and OWL-S SWSs and then on the basis of
this analysis we define specifications to transla®&EB process descriptions to OWL-S suite of ontologies. |
remaining chapter we use this BPEL process (pleasetimattehe ‘.bpel’ of the process and the ‘.owl’ fileés o
mapped OWL-S service amatomic processes are available with the tool download) teigeosome code
samples of mapping specifications. In evaluation setienSection 5), the whole BPEL process is mapped to
OWL-S service. Then we use this mapped OWL-S servianswer the problem questions (i.e. 1) semantic
based composition editing and modeling of services 2) siraly enriched interface of the BPEL process as
OWL-S SWS). In our evaluation section we enhancePtiveess Model ontology of mapped OWL-S service in
semantic environment (e.g. Protégé (John, et al., 2@DBJL(S Editor) (Daniel, et al., 2005) or even with
simple editor like Notepad to develop SWS for scenario 2.

2 Mapping Constraints

Mapping constraints create the base of mapping spedificathat can be used to translate BPEL process
descriptions to OWL-S suite of ontologies by providinglgsia of BPEL process model, OWL-S SWS and their
components. Here, we do not mean to provide completeiptime of these languages as their specifications
cover them very well but analytical description of RREocess models and OWL-S suite of ontologies helps to
categorize and to specify that which part of a prodessld be translated to which construct of OWL-S.

2.1 Analysisof BPEL Process M odel

A BPEL process model is set pfimitive andstructured activities. Here, we describe functional behavior of
BPEL processes and its activities on the basis oftwhie have defined specifications for translating BPEL
process descriptions to OWL-S SWS.

211 Processes
BPEL allows describing business processes in two ways:

Executable Processes are used to model interaction between participants \(Veb services) of a business
process. The logic and state of the process determeature and sequence of Web services interactions
conducted at each business partner, and thus the indarpotitocol (Francisco, et al., 2003, p. 9).

Abstract Processes are not typically executable. They are meant to coifab service interface definition with
behavioral specifications that can be used to botlstcain the implementation of business roles and défine
precise terms the behavior that each party in a besjpretocol can expect from others (Matjaz, et al., 2004,
51).

2.1.2 Primitive Activities

A BPEL process is a set of activities (ipimitive and structured activities). Primitive activities are used to
perform basic tasks of a process. Some important BPititive activities and their behavioral characteristics
are as under:

Invoke (<invoke>) activity is used to invoke a Web service by sendirgpihe input message and probably by
receiving some output message (Example 3 shows a samgie activity).

Example 3: invoke activity that performs a Web service operation etTrandation operation).

<i nvoke partnerLink="To_Translation_Service_Port_1"
portType="qg2:TranslatorPortType" operation="getTr anslation"
i nput Vari abl e="Messagel_To_Translation_Service"
out put Vari abl e="Messagel From_Translation_Service" />

In a BPEL processnvoke activity can have dual behavior i.e. 1) it can be usederform a Web service
operation 2) it can be used to create the interfacenofsynchronous BPEL process. Due to its different
behavior, mapping ahvoke activity to OWL-S also varies (as discussed in Sasti®1.2 and 3.2).

Receive (<receive>) activity receives a message from a Web serviceghiglio start a process. Like avoke
activity, areceive activity also has dual behavior i.e. 1) it can acamsnterface of a BPEL process 2) it can be
used to receive a message from a Web service in respmas asynchronous Web service operation.

Reply (<reply>) activity is used to reply a message in response ¢oeive activity.

Assignment (<assign>) activity is used to assign values to message variables BPEL process the
Assignment activity can be used to initialize input ragssof a Web service operation.

Primitive activities are used to perform small tasks within enlex process. Different activities can be
combined and their order of execution can be defined g ssmestructured activities.

2.1.3 Structured Activities

BPEL structured activities are used to define control flow between suitive andstructured activities within
a process. Some major structured activities with flueictional behavior are described below.

Sequence (<sequence>) activity is used to define a set of activities tlaaé performed in a sequence. A
sequence completes when its last child activity has been peréal.

Flow (<flow>) activity is used to invoke child activities concurtgntA flow activity completes when all
activities withinflow activity have completed.

Switch-Case (<switch>) activity is used to perform child activities under soooeditional aspects. Anitch
activity can have one or more conditional branchemel® by case elements. Acase may have optional
otherwise branch that is performed when condition statemerdrhes false.

While (<while>) is used to repeatedly perform a child activity. Thddchctivity under thenhile activity is
performed as long as thile condition holds true.

2.1.4 Some Additional Activities

Wait (<wait>) activity is used to wait for some time.

Throw (<throw>) activity is used for throwing exceptions andicating faults.

Terminate (<terminate>) activity is used to terminate a process.

In this section we provided an analytical descriptiorBBEL processes and functional constraints of BPEL
activities. With such analytical description of funaiid constraints of BPEL processes and activitiesdbines

easier to specify which BPEL activities have matghiehavior to which OWL-S control construct (CC). lEab
2 summarizes BPEL process components with their sioctibnal description.

Activities Description

Primitive Activities

Invoke Performs WS operation or create
process interface

Receive Receives process input message or
response of synchronous WS op-
eration

Reply Replies in response of some Re-
celve activity

Assignment Assigns message values

Structured Activities

Sequence Performs sub-activities in se-
quence

Flow Synchronizes sub-activities

Case-switch Shows conditional behavior

While Repeatedly performs a task

Some Other Activities

‘Wait Waits for some time

Throw Throws exceptions and errors

Terminate Terminates a process

Note: WS stands for Web service.

Table 2. BPEL process model activities and theicréson.

2.2 Analysisof OWL-S Ontologies

OWL-S is being developed to describe SWSs. Here, weyanéinctional constraints of OWL-S suite and its
CCs that can help to specify that which activitieBBEL process can be mapped to which OWL-S CCs on the
basis of their matching behavior.

221 OWL-S: Technical Overview

OWL-S is suite of OWL ontologies (i.€rofile, Process Model andGrounding ontologies) Profile ontology is
used to present semantically enriched interface of eepsoas SWS. Like a workflow language, Biecess
Model ontology can be used to model composition of mul@pbenic andcomposite processes (services). Figure
6 provides an overview of the OWLFocess Model ontology and relation dProcess class with child classes.
Grounding ontology describes about how to access a servicepdwsifing message formats, protocols and
transport. Service ontology actually acts as an organizer for ®refile, Process Model and Grounding
ontologies. Each OWL-S service has one instandeefdrvice class.

222 Processes
OWL-S has three kinds of processes:

Atomic Processes are processes that can be executed in a single stefh@ntave no sub procegstomic
processes are somehow like Web services operationsatide performed in a single step. &amic process is
described by using the cla&gmicProcess that is sub class of therocess class (as shown in Figure 6).

Simple Processes may be used either to provide a view of (a specializedofvasing) somatomic process, or
a simplified representation of sornemposite process (for purposes of planning and reasoning) (Daval,,et
2006, p. 1).

Composite Processes are processes that can have stdimic and composite processes. Like a workflow
modeling language we can usamposite processes to model the composition of multiple atomét@mposite
processes. Aomposite process allows defining the control flow between atgimic andcomposite processes by
using different CCs (e.gequence, split, split-join etc.).

o —————
Condition

9-;;H A m-» TF] e -
Sequence Spl.lt J’w‘ m
--------- > Sub Class/Property
— ObjectProperty

Figure 6. OWL-Srocess Model ontology.

2.2.3 Control Constructs

OWL-S defines a number of CCs that can be used to defimieol flow between sub processes witRitocess
Model ontology. Discussion about capabilities of these GQeecessary because they are used to define control
flow of BPEL process in the mapped OWL-S service. OWtHeBnes many CCs that can be used to define
control flow between process components. Some 0ét6€s are as under:

Sequence, components of &quence CC are performed in a sequenSeguence class is sub class of the class
ControlConstruct (as shown in sample code below) that holds othera3Gsib classes.

<ow : d ass rdf:ID="Sequence">
<rdf s: subd assO rdf:resource="#ControlConstruct"/>

</ rdf s: subd assCOf >
</ ow : C ass>

Split CC is used to perform its process components in parAleb, aSplit CC completes as soon as all of its
process components are scheduled for execution.

Split-Join CC is used for concurrent execution of process componghtpartial synchronization. &plit-Join
CC completes as soon as all of its process compohawsbeen performed.

If-Then-Else CC can be used to implement conditional behavior withhicomposite process. It has three
properties (i.eifCondition, then, else). Execution othen andelse depends on eithéfCondition is true or false
(i.e. ififCondition is true, perfornthen part and ififCondition is false then perforralse).

Repeat-While CC is used to repeatedly perform its process component§ long aRepeat-While condition
holds true). Condition is important part of OWL-S CCg(H-Then-Else, Repeat-While, Repeat-Until CCs).

2.24 Some Other OWL-S Mapping Constraints

Some other constraints that need to be addressed mhpping BPEL process descriptions to OWL-S are
follows:

Performing Individual Processes. As, we discussed before thatcamposite process is composition of sub
atomic and composite processes, these processes can be performed byResfogn CC. The invocation of a
process is indicated by an instance of Beeform class. Theprocess property of clas$erform indicates the
process to be performed.

Condition Expressions. We use SWRL expressions (Peter, 2005) being the most mesoded standard to
define conditions for OWL-S CCs. OWL-S API (Evren, 200 veloped by MIDSWAP Lab) also supports the
execution of conditions defined by using the SWRL.

Data Flow and Parameter Binding: OWL-S defines a clasBinding to define the data flow between process
components. For sure, OWL-S specifications allow defjrfiard code values (e.g. 5, "hello" etc.) as inputs of
processes.

Parameters and Results: In OWL-S specifications, parameters are what we walliables in general
programming languages. Parameters can be expressed byasingter class.

Table 3 summarizes important components of OWL-S ogyadmd their analytical description. On the basis of
capabilities and limitations of components of BPEL @WL-S we define mapping specifications for shifting
BPEL process model to OWL-S ontology.

OWL-S
Profile
Input /Output

Description

Provides functional semantics of
service as inputs and outputs
Describes functional semantics as
conditions before and after ser-
vice execution

Conditional output of service
Non-functional semantics

Pre-condition feffect

Result
Service category, provider, location

Process Model

Atomic process
Simple process
Composite process
Sequence

Split
Split-Join

If-Then-Else
Repeat-While

Executes in single step

Gives multi view of same process
Executes in multiple steps
Performs process components in
sequence
Concurrently executes process
components

Synchronizes process components
Shows conditional behavior

Repeatedly perform sub compo-

nent

Grounding
WsdlGrounding

Describes process grounding
Provides reference of atomic pro-
cess grounding
Transform XML

other

hasAtomicProcessGrounding

xsltTransformationString document to

Table 3. Analytical descriptidn@WL-S ontology constructs.

3 Translating BPEL Process Descriptionsto OWL-S

In the previous section (i.e. Section 2), we have dismlisn detail the process modeling and semantic
capabilities of BPEL and OWL-S and components of thesguages. Since, OWL-S is suite of three ontologies
(i.e. Profile, Process Model and Grounding ontologies) therefore, we describe the translatmmapping) of
BPEL process descriptions to OWL-S at three levets fhapping of BPEL process model to OWIR®file,
Process Model and Grounding ontologies). Table 4 describes specifications fordieing the BPEL process
descriptions to the OWL-S suite of ontologies. The digations are described from an abstract level to
components and activities level translation of BPEicpsses to OWL-S services. Areas, where direct mapping
is not possible or requires some additional manual iciierg are discussed as well.

Algorithm 1 provides a very abstract level descriptiorihaf recursive algorithm used for extracting OWL-S
suite from BPEL process model. It traverbpsl file objects tree as long as activitiesbipel file come to end.

An important thing to note is that when an activéynbt an I/Qorimitive activity then it is mapped taerform

CC (as described in Lines 13 and 33 of Algorithm 1) to perfoelevantatomic process. In next section we

describe the extraction Bfocess Model ontology from BPEL process model.

Ontology BPELAWS

OWL-S

Profile

Receive (message variable)
Invoke (input message variable)
Invoke (input/output message

Input parameters
Output parameters
Input/Output parameters

variable)

Reply (message variable) Output parameters

Process Model

Executable process Composite process
Primitive activity (operation)

Primitive activity (Invoke)

Atomic process
Perform CC

Sequence Sequence

Flow Split-Join

Switch-case Sequence(If-Then-Else)
While Repeat-While

Clondition statement SWRL expression

Assignment. Data flow specifications
Terminate Note
Throw Note
Wait. Note

Grounding

Primitive activity (operation) hasAtomicProcessGrounding

Complex Message xslt TransformationString

Note: No equivalent control construct is available in OWL-S for direct mapping.

Table 4. Summary of BPELAWS to OWL-S mapping spedifios.

3.1 Trandation tothe OWL-S Process Model Ontology

In this section we describe how a BPEL process madhinslated to OWL-®rocess Model ontology with
defined control and data flow. TH¥ocess Model mapping specifications describe about how BpEmitive
andstructured activities, condition statements, input/output data pgdsatween different activities, variables
etc. are mapped to OWL-S relevant control construtdRISexpression and parameters respectively. We also
provide some code example for translating BPEL activite®WL-S CCs. The whole process of translating
BPEL process descriptions to OWL-S depends on functidraabeteristics of BPEL and OWL-S components as
described in Section 2. During discussion of mapping speditsawe consider the translation of BPEL process
(i.e. Trandator and Dictionary process), which is mapped to OWL-S service. Now weritesstep by step
translation of BPEL process components to OWL-S CCs.

3.1.1 ProcessLevel Trandation

BPEL process model is composition of multiple Web ses/with defined control and data flow to perform a
joint task. A BPEL process model is mapped to OWEeBposite process that is a semantic based composition
of multiple atomic and composite processes. Control flow and data flow between difteMeb services
operations within a BPEL process model is mapped to o and data flow between process components
of an OWL-S composite service. Agtomic process within @omposite process is result of mapping of a Web
service operation that is performed byramitive activity.

We discussed before that a BPEL process is compositidfeb services operations that can be performed in a
single step. Each Web service operation within a BpEicess is mapped to OWL&omic process. The
mappedatomic process consists of complete OWL-S suite of ontologies Profile, Process Model and
Grounding ontologies). Since, actual tasks within a BPEL proegssperformed by executing Web services
operations therefore, a successful and useful mapping df BRIEess model to OWL-S is intimately dependent
on translation of each Web service operation invbméhin a BPEL process to OWL-&omic process. As
much as we know, till now there has no effort beenedehich supports the mapping of a BPEL process to
OWL-S and translates Web services operations witlBPBL process to OWL-&omic processes. Each Web
service operation that is mapped to OWL-S atomic prasestered in a separate OWL file. We can also execute
theseatomic processes by using some execution engines (e.g. OWL)ABY importing and executing them

in SWS development tool (e.g. Protégé (OWL-S Editon))c& our sampldrandator and Dictionary process
uses two Web services operations (@eTransation andgetMeaning, as discussed in Section 1.4) therefore,

these Web services operations are translated to OV&florBic processes (i.egetTrangationProcess and
getMeaningProcess) and stored imgetTrandation.om andgetMeaning.ow files (as shown in Figure 7).

] % [=- Project Explorer
o (7] Project Mame
@ (77 Business Processes

& [0F Service Descriptions

o [OF OWL-S Process Ontology
o= (3 OWL-S Suite Of Ontologies
OWL-S AtomicProcesses
D getTranslation.owl

[getMeaning.owl

e R R R e,

Figure 7. Web services operations translated to OVteRic processes and storedam files.

Input: Tree view list of BPEL process and WSDL services
Output: OWL-S suite of ontologies

1 begin

2 Extract BPEL activity from tree

3 Map structured activity to OWL-S CC {Algorithm 2)

4 Get child activities

5 while child activities exist do

6 if activity is not structured activity then

7 if activity is assignment activity then

8 while activity is assignment activity do

9 | Traverse activity list
10 end

11 if activity is non-1/0 primitive activity (i.e. wmvoke activity) then
13 Map it to perform CC to perform atomic process
14 Create data flow

15 Add reference of atomic process Grounding

16 end

17 end

18 if activity is not assignment activity then

19 if activity is [/O receive activity then
20 Create composite process input
21 Create Profile tnput parameters
22 else
23 if activity is I/O reply activity then
24 Create composite process onutput
25 Create Profile output parameters
26 else
27 if activity is I/O invoke activity then
28 Create composite process output
29 Create Profile output parameters
30 else
Ri| if activity is non-1/0 invoke activity then
33 Map it to perform CC to perform atomic process
34 Create data flow
a5 Add reference of atomic process Grounding
36 end
37 end
38 end
39 end
40 end
41 end
42 if child activity is structured activity then
43 | Map structured activity to OWL-S CC (Line 3)
44 end
45 end
46 end

Algorithm 1. Abstract level definitiofi the mapping algorithm.

3.1.2 Activitiesand Control Flow Trandation

In above section we have discussed that a Web seap@ration performed by grimitive activity is mapped to
OWL-S atomic process. Theprimitive activity that performs Web service operation is mapme®WL-S
Perform CC to perform thaatomic process within mapped OWL-S service. For example, cansiderimitive
activity (i.e. invoke activity as shown in Example 3) that is used to perfokeb service operation (i.e.
getTrandation operation). Theprimitive activity is mapped toPerform CC to perform the process
getTrandationProcess (as shown in sample code below), whgelTrand ationProcess is atomic process created
in above step (i.e. in Section 3.1.1) and storegkifirandation.ow file.

<process: process rdf:resource="http://examples.org/DummyURI.owl#
getTranslationProcess"/>

BPEL structured activities are used to define control flow betweeffedgnt child activities. OWL-S provides a
number of CCs (e.dSequence, Jlit etc.) for defining control flow between sub proces3edle 4 summarizes
mapping of BPELstructured activities to OWL-S control constructs on the basitheir matching behavior and
Algorithm 2 shows it from implementation perspective. \Wave discussed in detail about behavioral
characteristics of BPE#ructured activities and OWL-S CCs in Sections 2.1.3 and 2.2.3afAwpte of mapping
these activities we describe translation of vactured activities (i.e flow andsaitch) to relevant OWL-S CCs
(i.e. Split-Join andsequence of (If-Then-Else CCs)), because mapping of these activities is a bitl&ricky.
Synchronization between sub activities and procespooents is important for defining workflows especially
in complex business process integration scenarios. RRE&flow activity to define synchronization between
sub activities. A Flow activity completes when all of its sub activities are completed”. OWL-S CCs (e.gSplit
and Split-Join) are used to define synchronization between procesparents. Split-Join completes when all

of its process component have completed”. Where as capabilities &plit are expressed asdlit completes as
soon as all of its process components have been scheduled for execution”. Even though boti$plit andSplit-Join
CCs are used for concurrent execution of process compgobehntve mag-low activity toSplit-Join CC on the
basis of their matching functional characteristics.

A switch structured is used to describe conditional behavior and consisasligt of one or more conditional
branches defined by usimgse elements. Acase element has eondition attribute to define its condition and can
have an optionabtherwise branch that is executed if tltase condition becomes false. Tisgitch activity is
mapped tdequence CC of OWL-S specifications and eacsse element listed undesaitch activity is mapped
to If-Then-Else CC. Thecondition part of eacltase element is translated to SWRL expression (discusseelin n
section (i.e. Section 3.1.3)) amtherwise part ofcase element is mapped ®se part ofIf-Then-Else CC. We
can summarize mapping sfitch activity with a list ofcase elements as a sequen&equence) of If-Then-Else
CCs mapped with optionalse part.

Input: structured activity
Output: OWL-S CC
1 begin
2 if activity equal to sequence then
3 | Map to Sequence CC
4 else
5 if activity equal to flow then
a8 | Map to Split-Join CC
7 else
8 if activity equal to while then
9 | Map to Repeat-While CC
10 else
11 if activity equal to switeh then
12 | Map switeh activity to Segquence of If-Then-Else CCs
13 end
14 end
15 end
16 end
17 end

Algorithm 2. Algorithm to map BPEHKructured activities to OWL-S CCs.

3.1.3 Trandating Condition Statements

Conditions are an important part of BPEL activitieg(enitch, while etc.) and OWL-S CCs (e.ff-Then-Else,
Repeat-While etc.). Without mappingondition statements, only mapping of BPEL activities, which depen
conditions to OWL-S CCs, is not useful. We have impletee an efficient algorithm that translatesdition
statements of BPEL activities to SWRL expressionschvare supported by OWL-S specifications. The mapped
SWRL expressions can be parsed and executed by executior®igig. OWL-S API). Mappingondition
statements to SWRL expressions supports all conditigreahtors (e.g. =, !=, <, >, <=, >= etc.).

Before having a look on condition mapping algorithm weusthd&eep in mind that complexity @bndition
statement could vary with complexity of message varsieng used igondition statement. The reason is that

extracting message variables and message partsatiaic process that are being usedandition statement is

a complex task (specially when message variables of eampkssage types are involved). However, our
algorithm handles the translation adndition statements to SWRL expressions carefully and effilgidnt
parsing and tracking the list afomic processes and their messages.

Input: condition statement
Output: SWRL expression
1 begin
2 Parse condition statement
3 Extract left hand operands of condifion statement (i.e. messagel_Name, variablel_Name and
part!_Name)
4 if wvarieblel_Name equal to null and part{_Name equal to null then
5 while list of Local Variables not ended do
6 it local_Variable_Name equal to message_Name then
7 | Save reference of local variable as local_Variablel_Name
8 end
9 end
10 end
11 Find econdition operator
12 if right hand operand is message variable of an atomic process then
13 Find index of "and” operator or "er” operator
14 if "and” operator exists or "or” operator exists then
i5 Display message "Multiple conditions are not supported”
16 Extraect right hand operand of condition statement
17 end
i8 Extract right hand operand of condition statement (ie. message?_Name, variable?_Name
and part?_Name)
19 if wvariable?_Name equal to null and part? Name equal to null then
20 while list of Local Variables (local_Varable_Name) not ended da
21 if local_Variable_Name equal to message_Name then
22 | Save reference of local variable as (local_Variable2_Name)
23 end
24 end
25 end
26 end
a7 Extract right hand operand (i.e. expression)
28 if (local Variablel_Name equal to null and local_Variable2_Name equal to null J or (
local_Variable{_Name equal to null and expression equal to null | then
29 while condition operands not end do
30 while list of atomic processes not ends do
31 if operand equal to atomic process input then
32 | Save reference of atomic process input
33 end
34 if operand not equal to atomic process input then
35 | Find operand in output list of atomic processes and save its reference
36 end
a7 end
38 end
39 end
40 senerate SWRL expression;
41 end

Algorithm 3. Algorithm to parseondition statement and to generate SWRL expression.

3.14 DataFlow Trandation

We can discuss the mapping of data flow at two levels; isrdefining the input and output ofcamposite
process, second level of defining data flow is passingages between process components withimposite
process.

To understand data flow definition at first level, colesia BPEL process in whigfeceive activity receives a
message from outer world to start a process. Such ageetsat initiates a process is defined as input message
of composite process withinProcess Model ontology of mapped OWL-S service. In remaining prochss t
message is referred as a message that belongs to desgiteParentPerform to pass this message as input of
sub processes. Similarly such situations are also p@dsilwhich the output of a sub process becomes the
output of composite process. In such cases output of sub process is alsedlefs output of the process
TheParentPerform.

We have also discussed that within a BPEL process noodelt of one Web service operation can be used as
input of the next Web service operation. During the mapping BPEL process to OWL-S service, passing
messages (data) between sub processes wittimgpsite process is addressed by using Biaging class.

3.15 Variablesand Local Parameters Trandation

Like traditional programming languages, we can also deetiables in a BPEL process to store and share data
between different activities within a process. Suchiabdes within a BPEL process are mapped to local
variables LocalVariable) in OWL-S. These local variables can be used to mdaie and share data between
subatomic andcomposite processes. In Section 3.1.3 we have discussed that bewvltical variables are used
in condition expressions to store and compare values with inputs apdtsuif subatomic and composite
processes. Local variables can be connected with gseedy using the propettgsLocal of theprocess class.

In this section we have discussed the translatiorP&flBprocess model to OWL S ocess Model ontology. We
also described the logic of translation of BPEL atitiei to OWL-S CCs on the basis of mapping constraints
(discussed in Section 2). Translation of some of BPiviies to OWL-S CCs have been described with their
syntactical information to describe mapping aspects maipect to their language specifications. The mapped
Process Model ontology can be used to further edit and model more censplwice in a semantic environment
(as discussed in Section 5 to evaluate our approach).

3.2 Trandation tothe OWL-S Profile Ontology

Profile ontology is used to describe semantically enrichedrimétion about capabilities of a BPEL process
when it is mapped to OWL-S SWS. Semantically enricindorination about capabilities of mapped process
model is described as Inputs required by the service ®utputs generated by the service @e-conditions
required to use a service dfects that service produces in surrounding world after its exatu$emantics of
these input/output parameters, pre-conditions and effeetspavided by annotating them with domain
ontologies defined in a separate OWL files. Since, BPficess model provide no semantic information about a
process thereforeRrofile ontology parameters of mapped OWL-S service are autcaligtannotated by the
mapping tool with dummy ontological concepts (URIs). Sisegnantic information about a service capabilities
can vary from user to user therefore, it is not pésdib judge a user requirements automatically, generate
domain ontologies according to that requirements and atenBtofile ontology parameters with these
ontological concepts. Maximum process of generatingfile ontology from BPEL process is performed
automatically by the mapping tool but end user can provaeastic of mapped service by annotating
input/output parameters Bfofile ontology with their required domain concepts. In shaet gan finish up with
Profile ontology by performing following tasks:

» Developing domain ontologies by using some semantic Wedlagement tool (e.g. Protégé)
» AnnotatingProfile ontology parameters with these domain ontology concepts

How to develop domain ontologies (Matthew, et al., 200#f),(annotate) and develop SWSs with these domain
ontologies ? is not the aim of this chapter. Howewer explain these topics to some extent so that theiserd
can get more clear idea and understanding that howritfde ontology of mapped OWL-S service can be
extended to enable it for semantic based publishing anoveiseg. First of all, we describe the criteria tiat
used to extracProfile ontology from a BPEL process model and automatic ationtaf Profile ontology
parameters with domain ontologies. Then we give a shemtription about how to develop domain ontologies
and to use them to annotdeofile ontology parameters of mapped OWL-S service.

3.21 Extracting the Profile Ontology

In Section 2.1.2 we have already discussed hatitive activities can have dual behavior i.e. 1) to perform a
Web service operation 2) to interact with the outerldvdi.e. to create interface of BPEL process model).
Mapping ofprimitive activities that are used to perform Web services tpasawith in a BPEL process has
been discussed in Sections 3.1.1 and 3.1.2. Here we arermxhedth primitive activities that can be used to
create interface of BPEL process model. A BPEL procasshave one or mogeimitive activities (i.e.receive,
invoke andreply activities) that are used to interact with outer @o8uch activities are declared as input/output
(I/O) activities during mapping process. Message partsesethliO activities messages are used to create input
and output parameters Bfofile ontology. For example if a process haseeeive activity which receives a
message from user to start a process then this gavideclared as I/O activity and message parts of the
message received by this activity are used to cregiat iparameters of resultingrofile ontology. Again,
consider grimitive activity (<receive>) and its message that has three partsifipet_Lang, output_Lang and
input_Str). These message parts are used to create input paraofetessltingProfile ontology (as shown in
Example 6).

Example 6: An example of mappPdofile ontology.

<profile: Profil e rdf:about="&bpeldws2owls#TestProfile">
<profile:textDescription>This Profile is created by BPEL2OWLS Tool
</profile:textDescription>
<profil e: hasl nput >
<process: | nput rdf:about="&bpel4ws2owls#inputLang">
<process: par anet er Type rdf:datatype="http://www.w3.0rg/2001/
XMLSchema#anyURI">http://www.w3.0rg/2001/XMLSch ema#string
</ process: par anet er Type>
</ process: | nput >
</ profile: hasl nput >
<profil e: hasl nput >
................ other input/output parameters
<rdf s: | abel >BPEL20OWLS Profile </rdfs:|abel >
<servi ce: pr esent edBy rdf:resource="&bpeldws2owls#TestService"/>
</profile:Profil e>

A reply activity can be used to send a message to the outkt iwaresponse to eeceive activity. If areceive
activity has correspondingeply activity then message parts of the message of ipth activity are used to
create output parameters of mappdfile ontology. It is also possible thatreceive activity does not has
correspondingeply activity (as you can see in some example BPEL prosesgglable with the tool download)
and BPEL process usés/oke activity to send output message to the outer world. immdhse message of the
invoke activity is parsed in corresponding WSDL file and isssage parts are used to create output parameters
of Profile ontology of mapped OWL-S service.

Till now we have explained that hgwimitive activities are used to create interface of BPEL moemd how
we use message parts of these 1/O activities to cigpi/output parameters of mappeafile ontology. One
more thing that needs to be clarified is that among ielof BPELprimitive activities how grimitive activity

is declared as an /O activity so that its message jgart be used to create input/output parametepsofife
ontology. The criteria that we used for this purposias if areceive activity is being used as an initial activity
to start a BPEL process (i.e. éi®atel nstance attribute value iges) and itsportType andoperation is supported

by BPEL's corresponding WSDL file.

Another important issue that we think is importantigghlight is that mapping specifications support to extract
oneProfile ontology from a BPEL process model. It means thaBPEL process has multiple activities that act
as an interface of BPEL process, only fgramitive activities are declared as I/O activities and thedssage
parts are used to create input/output parametePsafifle ontology of mapped OWL-S service. Even though
OWL-S specifications support to create multiffeofile ontologies for oneProcess Model ontology but
automatic translation of BPEL process description toLc&BMextracts ondProfile ontology for oneProcess
Model.

3.22 Developing and Annotating with Domain Ontologies

In above section we have described in detail that &dwofile ontology is extracted from a BPEL process
model. If we have a deeper look at santpiefile ontology (i.e. Example 6) provided in previous sectionsee
that input/output parameters Bfofile ontology are mapped to dummy URIs. These dummy URIs nelee to
replaced with user defined domain ontological concepts (Eiguprovides a conceptual view of annotating
Profile ontology parameters with domain ontological concefisgh annotation provides semantically enriched
information about capabilities of mapped OWL-S service.

presents Profile i
e annotation
AR .'E@
'-.": - ., L
P ST
X -
L
Service deseribedby g —

Je m"’”‘"“"""ﬂ-.-.-,.,.,

> " Process
Lla

s Model
3, supports

L
™)
R P .
e, ey &
’ A gy omding

Figure 8. Annotatingrofile ontology with domain ontology concepts.

Since, OWL-S specifications support to define multiptefile ontologies for ondProcess Model ontology
therefore, end user can also define multiBtefile ontologies for oneéProcess Model ontology to provide
different meaning of same service. Protégé with itsLdMgin (Holger, et al., 2004) is an ideal framework for
developing domain ontologies. Example 7 gives a simple exavhe Language ontology that we can use to
annotate input/output parameters of our magpredile ontology to provide semantically enriched information
of mapped service.

Example 7: Sampleanguage ontology.

<owl : 0 ass rdf: | D="SupportedLanguage" >

<r df s: comment >Languages supported by the BabelFish translator is an
enumerated set of the following languages </ rdfs: coment >

<ow : one rdf:parseType="Collection">

<factbook:Language rdf:about="&factbook;# English"/>

<factbook:Language rdf:about="&factbook;# Dutch"/ >

<factbook:Language rdf:about="&factbook;# French"/>

<factbook:Language rdf:about="&factbook;# Ger man"/ >

(list of supported languages)

</ ow : oneC¥
</ ow : Cl ass>

Suppose that above language ontology is defined at folloaddgesshttp: www.uni-leipzig.de/Languages.om}
(shortly &languages). Then the mapperafile ontology (as show in Example 7) after annotating itaupaters
with domain ontology looks like:

<profile: Profil e rdf:about="&bpeldws2owls#TestProfile">
<profile:textDescription>This Profile is created by BPEL2OWLS Tool
</profile:textDescription>
<profil e: hasl nput >
<process: | nput rdf:about="&bpel4ws2owls#inputLang">
<process: par anet er Type rdf:datatype="http://www.w3.0rg/2001/
XMLSchema#anyURI">&languages#SupportedL anguage
</ process: par anet er Type>
</ process: | nput >
</ profile: hasl nput >

.......... (other input/output parameters)

<rdf s: | abel >BPEL20OWLS Profile </rdfs: | abel >
<servi ce: pr esent edBy rdf:resource="&bpeldws2owls#TestService"/>
</profile:Profil e>

3.3 Trandation to the OWL-S Grounding Ontology

Grounding ontology of the OWL-S service describes that howatoess a service. Access details include
information about protocol, transport and message farnTdtese details enalBrounding to provide concrete
level specifications needed to access a service. E€mnlewvel definition of inputs/outputs atfomic processes in
some transmittable format is provided @Grounding ontology. For this purpose original WSDL services are
referred inGrounding to access real implementation of services. Whereh ¥érvice operation within a BPEL
process is mapped to OWLe&Bomic process (during the mapping process) then input/output mesgaged
service operation are defined as set of inputs/outputseiriounding ontology of thatatomic process. That's
why in Section 3.2 we have seen that input/output messddéd activities are not directly used to create
Profile ontology but message parts of these messages are usstdobfnputs and outputs Profile ontology.
These inputs and outputs when annotated with domain orgslpgovide Web service semantics.

Now about types of messages and message parts: thén g@ssibilities 1) the message is a complex message
of some OWL class type 2) the message is of other dsiialtype (e.g. string, int etc.). In first case, iriavh
message is of some OWL class type; we need to giveefiration of OWL class. This definition can be given
within the same documeéndr can be defined in separate OWL file and can bereefén the type paramefer

An OWL-S serviceGrounding is an instance of th&rounding class that has sub cla#sdlGrounding. Each
WadIGrounding class contains a list alsdl AtomicProcessGrounding instances that refers @®rounding of
atomic process. WsdlAtomicProcessGrounding has properties (e.g.wsdlinputMessage, wsdllnput,
wsdlOutputMessage, wsdlOutput etc.). wsdlinputMessage and wsdlOutputMessage objects contain mapping

! http://www.mindswap.org/2004/owl-s/services.html BabelFisiinslator service provide such example.
2 http://www.mindswap.org/2004/owl-s/services.html Find Che&pek Price service provide such example.

pairs for message part of WSDL input/output messages andesented by using an instance of
WedlInputMessageMap. If a message part is of some complex type (e.g. somé& ©¥ss) then XSLT
Transformation property gives an XSLT script that getesranessage part from an instance of atoenic
process. As an example consider grounding (as shown inesaogs below) of mapped OWL-S service.

<gr oundi ng: Wdl Gr oundi ng rdf:about= " &bpel 4ws2owl s#Test G oundi ng" >
<servi ce: support edBy rdf:resource="&bpeldws2owls#TestService"/>
<gr oundi ng: hasAt om cProcessG oundi ng rdf:resource= " &Jdummy UR
#get Tr ansl ati onAt om cProcessG oundi ng" />
<gr oundi ng: hasAt om cPr ocessG oundi ng rdf:resource="&dummyURI
#get Meani ngAt om cPr ocessG oundi ng"/>
</ groundi ng: W&dl Gr oundi ng>

The above sample code gives an example of grounding of mappgmbsite service (i.€lestService), where
getTrans ationAtomicProcessGrounding and getMeaningAtomicProcessGrounding are groundinges of two
atomic processes which are sub processes within maggpagbsite process. The sample ontology shown below
gives an example @rounding ontology of thegetTrandation atomic process.

<gr oundi ng: Wdl Gr oundi ng rdf:about= "#get Transl ati onG oundi ng" >
<gr oundi ng: hasAt om cProcessG oundi ng>
<gr oundi ng: Wdl At om cProcessG oundi ng

rdf:ID= "get Transl ati onAt om cProcessG oundi ng" />
</ groundi ng: hasAt om cProcessG oundi ng>
<servi ce: support edBy rdf:resource= "#get Transl ati onServi ce" />

</ groundi ng: W&dl Gr oundi ng>

<gr oundi ng: Wdl At omi cPr ocessG oundi ng rdf:about=
"#get Transl ati onAt om cProcessG oundi ng" >
<gr oundi ng: wsdl | nput Message rdf:datatype="http://www.w3.0rg/2001/
XMLSchema#anyURI">&wsdIFileAddress#Tra nslatorRequest
</ groundi ng: wsdl | nput Message>
<gr oundi ng: wsdl | nput >
<gr oundi ng: WdI | nput MessageMap>
<gr oundi ng: wsdl MessagePart "http://www.w3.0rg/2001/
XMLSchema#anyURI">&wsdIFileAddress#i nputLanguage
</ groundi ng: wsdl MessagePar t >
<gr oundi ng: oM sPar anet er
rdf:resource="&wsdIFileAddress#inputLanguage"/>
</ groundi ng: W&dI | nput MessageMap>
</ groundi ng: wsdl | nput >

.......... (other message parts)
</ groundi ng: WsdI At om cProcessG oundi ng>

3.4 Implementation of Mapping Tool

We have developed a tool (i.e. BPEL4AWS 2 OWL-S Mapping’J tiwat can be used to translate existing BPEL
processes to OWL-S services. The BPELAWS 2 OWL-S Mappod is an open source project and was
downloaded hundreds of times since it was uploaded to thesopece platform, sourceforge.net.

3.41 Architecture

The overall architecture of BPELAWS 2 OWL-S Mapping Tamisists of three components (i.e. WSDL Parser,
BPEL Parser and OWL-S Mapper) as shown in Figure 9. idslear from name that WSDL Parser parses each
WSDL file with in mapping project and creates their objéew. An important feature of WSDL Parser is that
extracts information about operations supported by a \&efices and send this information to OWL-S Mapper
which maps each Web service operation to OWdtefnic process. OWL-S Mapperwrites the generated OWL-S
atomic process in a separate OWL file and saves it in atgmdcesses directory of mapping project. Atomic
processes are used withdomposite process to define control flow and data flow betweeitgss components
with in OWL-S composite service.

BPEL Parser traverse through BPEL file and createscbhbjiew of process activities. It parspsmitive
activities and sends information about these actsitteOWL-S Mapper. Before sending information to OWL-S
Mapper, BPEL parser declares eithqariamitive activity is an I/O activity or not (Section 3.2 debes in detalil
that how an activity is declared and mapped as an I/@itgct If a primitive activity is declared as an 1/O
activity then OWL-S Mapper uses message part of thigitgdb create input/output of parameterscofmposite

3 http://bpel4ws2owls.sourceforge.net/

process, which ultimately are used to createRtufile ontology parameters. If primitive activity is non 1/O
activity then OWL-S Mapper maps it Rerform CC to perform relatedtomic process. Also, BPEL Parser
parsesstructured activities in defined control flow of input BPEL proseand sends information about these
activities to OWL-S Mapper. The OWL-S Mapper translatesm to relevant CCs to define control flow of
mapped OWL-S composite service. If BPEL Parser sendsniation to OWL-S Mapper aboutssignment
activity then OWL-S Mapper traverse through list of Brgatomic processes to extract input/output parameters
of these processes matches them witbpy> <to> and<copy> <from> parameters ohssignment activity and
creates data flow between relevant process comportatBPEL parser comes to some conditicstelictured
activity then it simply sends condition string to OWLMapper which creates corresponding SWRL expression
(as explained in Section 3.1.3).

OWL-S Atomic Process
o Service
o Profile

Web Service
WSDL Operation * Process Model
BPEL Puser / = * Grounding
¥

v

;

Grounding
", Resource
hasAtomicProcessGrounding ;o™
M-WSDL Perform '
o !

Operation | OWL-S Perform
Statement

Primitive

S WSDLs Activity

=

Structured
Activity

Lgh
OWL-S CC ™%

/O Parameters

Mapping

Figure 9. Architecture of the mapping tool.

OWL-S Mapper is actually responsible for writing resti®WL-S service according to defined mapping
specifications. It uses OWL-S API developed by mindswéptdawrite resulting OWL-S composite service.
OWL-S APl is set of APIs that can be usedead, write andexecute OWL-S services. Since, OWL-S API uses
a third party reasoner (e.g. “jena reasoner”) to reéise mapped OWL-S ontology therefore, our tool also uses
jena reasoner (as default reasoner) for such reaspoipgses.

3.4.2 User Interface

The BPEL4AWS 2 OWL-S Mapping Tool provides very easy tointeeface which consists of four major parts
(i.e. Project Explorer, Object Explorer, Content Windawd Output Window) and Boolbar andMenu bar as
shown in Figure 10.

Project Explorer can be used to see project input and oulgmait®bject Explorer provides object view of input
BPEL and WSDL files. Content window can be used tocsegents of any of the input/output files. User can
simply select a file in the Project Explorer to ssecitntents in the Content Window. Output of differeribas
performed (e.g. Validate, Build and Map) can be seen i®thput Window.

2 BrEL4WS 2 OWL 5vi.L 5 [= T3]

Eiln Project Tanis Heln
== on | 3| & |
e - (=] + &= Project Explorer
<to variable="Message1_To_Translation_Senice" part="inputstring" /> & [Project Name
<icopy=
<copy-
<irom variaile="InpUt_Message” part="part” query="r! =0t and =it in e
putStrAndLang Wllocal-name (=nputstr’ and namespace-urin=" r> ¢ £ Service Descriptions
<10 variable="Message1_To_Translation_Semice’ par="nputSting’ quen=""llocal-name0="string' and namespace-urio="tt > [OWL-S Process Ontology
Mol XLTNGT - 7 [OWL-S Sutte 0T Ontolagies
s [} Sonvico.om
<from = [profile.ow!
£SUng InS=Moc XHLTN /-) Processmodetowt

<to variable="Message1_To_Translation_Senice’ par="inputlanguage’ (>

copy>
<from variable="Input_Message’ par="part’ quen="r" =Root and ="t ang in
outstrAnaLang) =inputLang and =T 1>

<to variable="hlessage1_To_Translation_Serice’ par="inputLanguage” query=""llocal-nameo="string’ and namespacs-urig)
it ioduleXMLTNS T i~

joe par-toutputLanguags - ¢ [Lana i LangTransiationOrch.bpet

o =Rnat and =it
amespace-urig=""j> =
ice” part-outputlang uage’ query-"{iocak name G-'sting! and namespace-uri

“ta v, e
(0="nitp /Mo duleXMLTNST" 1=
<icopy=
fazeign=

© partnerLink="To_Translation_Service_Port_1" portType="q2TranslatorPorType" operation="gefTranslation" inputvaria
1 _Tu_TransTalion_Senite” oulpulvariahl="es suae]_From_Translalon_sendce” (=

ns created successtully it

eating definitions from File:
ITranstatorSendce.wsdl
Definitions created successfully

N Y 5

Figure 10. Overview of BPELAWS 2 OWL-S Mapping Tool.

4 Some Related Efforts

Translating business process descriptions to OWL-S agi&d is a very efficient and cost effective way for
enabling business processes with semantics to féeititmamic interaction between business partnersr&eve
efforts have already been done to address semanttatiionis of process modeling languages. For example, the
METEOR-S research group at LSDIS Lab is working on extendPEL with semantics to compose Web
services (i.e. WSDL-S services) on the basis ofthiag semantics. The work discussed in (Jun et al., 2005;
Jun., et al., 2006) describes mapping from the BPEL procadsl to the OWL-3Process Model ontology. We
have already criticized and pointed out drawbacks of fgcach in our work (Aslam., et al., 2006). Major
drawback of (Jun., et al., 2006; Jun., et al., 2005) are hlegitdo not support thierofile and theGrounding
ontologies. WithouProfile ontology, mapped BPEL process model cannot be adverss@i\éd.-S SWS that
can be discovered, invoked and composed dynamically. THediscussed in (Massimo, et al., 2003) describes
a good effort to map WSDL services to DAML-S (updated WLES) services. Another effort (Gayathri, &
Yun-Heh, 2007) has been done by a joint group of researéfoensUniversity of Edinburgh and School of
Informatics to address semantic limitations of FundaaidBusiness Process Modeling Language (FBPML) by
mapping it to OWL-SProcess Model ontology. The work discussed in (Gayathri, & Yun-Heh, 2088p
supports only the mapping of FBPML process model to OVWAreBess Model ontology. It does not support the
mapping ofProfile andGrounding ontologies. The work discussed in (Gayathri, & Yun-H) has almost
same limitations as that of the work discussed in (&tral, 2006; Jun., et al., 2007) and which | have criticized
in (Aslam, et al., 2006). We can summarize that there lmany efforts been done to address semantic
limitations of process modeling languages by mapping thesertantic Web services languages (e.g. OWL-S)
but none of these efforts provide expressive and consitution. Our work is unique with these aspects that it
supports the translation (mapping) of BPEL process desmsigptio complete OWL-S suite of ontologies. We
have also well addressed the issues (e.g. conditions ngappipport for complex messages, mappingiafic
processes etc.) that have not been addressed by anyegharch group. Another uniqueness of our work is that
we use the OWL-S APl in our tool to write the resigtl@WL-S service due to which it becomes consisterit wit
execution engines like OWL-S API and semantic Web sesvievelopment tools (e.g. OWL-S Editor).

5 Evaluation and Benefits

In Section 1.4 we defined two problem scenarios (as shdvigures 4 and 5) and modeled a BPEL process to
perform the task defined in first scenario. Then weyaed BPEL and OWL-S processes and their components
and defined step-by-step translation of BPEL procesd¥b-S SWS. Till the end of Section 3 the whole BPEL
process was mapped to OWL-S SWS with each Web sempaation within the BPEL process model mapped
to OWL-Satomic process.

As a first step to edit the mapped OWL-S service to perfbe task defined in second scenario, we replace the
dummy URIs of input and output parameters of mabeamic andcomposite processes with domain ontologies
(as discussed in Section 3.2). The annotation of input/oytgremeters can be performed by opening the
mapped OWL filesdgtomic andcomposite processes) in OWL-S Editor (even though some compttilssues
between OWL-S Editor and our tool still need to be adeb$as discussed in Section 7) or in any other editor
(e.g. Notepad). Annotating input/output parameters helps t@ediextend theomposite process by defining
data flow between sub processes on the basis of mgtseimantics. Mapped OWL-S service talgmitStr,
inputLang andoutputLang as inputs of the OWL-S service. The fiagbmic process (i.egetTrand ationProcess)
translates the input string from input language &erman) to output language (i.&nglish) and the second
atomic process (i.egetMeaningProcess) provides the meaning of the input wordgnglish language. From here
we start editing the mapped service and add one more apootess (i.egetTrand ationProcess) within the
Sequence CC ofcomposite process. Thistomic process is used to perform the additional task defineecions!
scenario (Figure 5) (i.e. to translate the meanindg@German word back fromEnglish to German). For this
purpose we define data flow for this newly ad@éamic process. TheetTrandationProcess process takes as
input inputLang (English), outputLang (German) andinputStr (output ofatomic procesggetMeaningProcess).

The data flow can be defined by using data binding betaen c processes (as discussed in Section 3.1.4) on
the basis of matching semantics.

In Section 1.4 we defined two major problems of BPEL @ssed.e. 1) syntactical interface 2) syntax based
process modeling (i.e. Web services composition). Weeaddbpoth of these problems by translating BPEL
process description to OWL-S suite of ontologiBsofile ontology of mapped OWL-S service provides
semantically enriched information about BPEL proces®@L-S SWS and can be used for dynamic discovery,
invocation and composition of BPEL process as OWLf#ice Mapped OWL-S service is edited and extended
on the basis of matching semantic information rathan syntactical information to solve the problerings in
second scenario (Figure 5).

With rapidly growing rate of e-shopping it is becoming viemportant for e-business companies to keep their
business processes and services alive with upcoming seriéeb technologies. Adding semantics will enable
existing business processes and services for dynamipetatmn with business partners and for dynamic

interaction with end users. But developing semantic exatlisiness process and services from scratch is very
cost effective and time consuming for both small angdarganizations. Our approach provides a very efficient

solution with respect to cost and time to shift exigtbusiness process to SWSs enabling them for dynamic
discovery, invocation and composition by other sencagriabled systems.

6 Risk Assessment

Although, the goal of automatic translation is very appgathe intention may have some threats in pradtice

a number of reasons. One of them is that OWL-S wéfpect to its process modeling capabilities is not as
mature as BPEL and mapping of block-structured BPEL tosentaased OWL-S is challenging. Since, BPEL
is syntactical language and provides no semantic infoom#terefore, in case of complex business processes it
may become hectic to develop domain ontologies fromatatrand to annotate mapped OWL-S service
parameters with these domain ontologies.

Modelling BPEL processes is supported by a number of {eajsMS BizTalk Server, IBM WebSphere, SAP
NetWeaver etc.). None of them support to export BPELgus®s to OWL-S services. Integrating BPELAWS 2
OWL-S Mapping Tool with these process modeling toolsearaable them to export BPEL processes as OWL-S
services but this functionality will neither be fullytomated nor support full semantics. End user involvements
will be necessary to add meaning to each of the proglessents and make them machine-readable and
understandable. In addition, it will also allow for remi®ig on the process descriptions as OWL-S services.
Once, BPEL process description is translated to OWMS &nd edited to add semantics, will make it possible
to automatically assign Web service (or their compmsjtto each task and to generate final service tate
deployed and executed by SWS execution engines (e.g. OWL)S API

7 Conclusion and Future Aspects

In this chapter we presented an approach leading towamtntie business processes. The rationale of the
proposed approach is that traditional business procesge8REL processes) due to their semantic limitations
cannot be dynamically discovered, invoked and composedhley semantic enabled systems. These semantic
limitations slow down the process of integration befwebusiness partners, business organizations and
customers. The methodology that we have used to address fimitations of process modeling languages
consists of mapping constraints and specificationsd@iatbe used to translate BPEL process descriptions into
the OWL-S suite of ontologies (i.e. OWL-S SWSs). Tiesulting OWL-S services are semantic based
compositions of child services and expose semanticatigheed interfaces. As a result they can be editethen t
basis of matching semantics to model more complexcgenas well as they can be dynamically discovered,
composed and invoked by other semantic enabled systeemmbaW¢ implemented our approach as a mapping
tool (i.e. BPELAWS 2 OWL-S Mapping Tool) that can be used to map (translate) BPEL processiptésts to
OWL-S services. Critical issues (e.g. the mappingcafdition statements, translating activities to CCs,
generatingProfile ontology parameter from complex I/O messages etc.) bese addressed by implementing
efficient parsing and mapping algorithms. Since, OWL-8asas mature as BPEL, we have also highlighted
different areas where direct translation of actisiie not supported. In order to implement direct trarmsianf
BPEL activities (e.g. terminate, fault handling etce) meed more consistent specifications of OWL-S to addre
these issues. We have also highlighted areas whereanseejuired to manually provide additional information
(e.g. changing the parameter type by annotating input/outpaitnggers with suitable domain ontologies etc.).

In order to perform more consistent mapping, it willneeessary to address limitations that we have dedcribe
in our mapping specifications with upcoming OWL-S specifices. Also, making the tool part of some larger
framework like Protégé will support end users more effttjerSuch an effort will enable the end user to
directly import BPEL processes as OWL-S services otdgé (OWL-S Editor). It will also become easier for
end users to develop domain ontologies and to anrftafiée ontology parameters with domain concepts while
working in the same framework (i.e. Protégé).

Acknowledgement: Funding for the research leading to these findings isagtigriprovided by the Higher
Education Commission (HEC) of Pakistan under the schHé&ragial Support Scholarship for PhD Studies
Abroad”.

References

Aslam, M., A., Séren, A., Jun S., & Michael, H. (200Bxpressing business process model as owl-s ontologies.
In E. Dustdar (Ed.), Proceedings of the 2nd InternatiMiatkshop on Grid and Peer-to-Peer based
Workflows in conjunction with the 4th Internationali@erence on Business Process Management, Volume
4103/2006 (pp. 400-415), Vienna, Austria.

Christoph, B., Emilia, C., Dieter, F., Juan, M., &min, H., Thomas, H., Michael, K., Adrian, M., Magw M.,
Eyal, O., Brahmananda, S., loan, T., Jana, V., ToiMasMaciej, Z., & Michal, Z. (2005). Web service
execution environment (wsmx). Retrieved April 20, 2007, frdtp:Hwww.w3.org/Submission/WSMX/.

Dan, B., & Ramanathan, V., G. (2004). RDF vocabularyrifgsm language 1.0: RDF schema. Retrieved May
22, 2007, from http://mww.w3.0rg/TR/2004/REC-rdf-schema-20040210/.

Daniel, E., Grit, D., David, M., Fred, G., John, Khahin, S., & Rukman, S. (2005). The OWL-S editor - A
development tool for semantic web services. In A. @oRerez & J. Euzenat (Eds.), The Semantic Web
Research and Applications)®ZEuropean Semantic Web Conference, VolG582 (pp. 78-92), Heraklion,
Crete, Greece.

David, B., & Canyang, K., L. (2006). Web services desaiptanguage (WSDL) version 2.0 part 0: Primer.
Retrieved April 11, 2007, from http://www.w3.0rg/TR/2006/CR-wsdI20nti-20060327.

David, M., Mark, B., Jerry H., Ora, L., Drew, M., Slae M., Srini, N., Massimo, P., Bijan, P., TerBy,, Evren,

S., Naveen, S., & Katia, S. (2006). Owl-s: Semantickonarfor web services. Retrieved April 10, 2007,
from http://www.ai.sri.com/daml/services/oall.2/overview/, March 2006.

Deborah, L., M., & Frank V., H. (2004). OWL web ontoldgnguage overview. World Wide Web Consortium,
Recommendation REC-owl-features. Retrieved April 17, 2006, fittp://www.w3.org/TR/owl-features/.

Evren, S. (2006). Owl-s api. Retrieved May 20, 2006, from hitpw. mindswap.org/2004/owl-s/apil.

Evren, S., Bijan P., & James, H. (2005). Template-basawpasition of semantic web services. In AAAI Fall
Symposium on Agents and the Semantic Web, Virginia, USA.

Francisco, C., Hitesh, D., Yaron, G., JohannesFKank L., Kevin, L., Dieter, R., Doug, S., Siebel, Satish,

T., lvana, T., Sanjiva, W. (2003). Business process exgclghguage for web services. Retireved April 5,
2007, from ftp://mww6.software.ibm.com/software/developardry/ws-bpel11.pdf.

Frank, L. (2001). Web Services Flow Language (WSFL 1.0).id%ett May 14, 2007, from http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Gayathri, N, & Yun-Heh, C. (2007). Translating FundameBiainess Process Modelling Language to the
Web Services Ontology through Lightweight Mapping. IET WBafe Journal, 1, 1-17.

Graham, K., & Jeremy, J., C. (2004). Resource descrifittonework (RDF): Concepts and abstract syntax.
Retrieved May 25, 2007, from http://www.w3.0rg/TR/2004/REC-rdfeemts-20040210.

Holger, K., Mark, A., M., & Alan, L., R. (2004). Editing d=fption logic ontologies with the Protégé OWL
plugin. In V. Haarslev and R. Moller (Eds.), Proceedirfga®2004 International Workshop on Description
Logics volume 104 (pp. 70-78), Whistler, BC, Canada.

Joel, F., & Holger, L. (2006). Semantic annotations fesdl. Retrieved March 26, 2007, from
http://www.w3.0rg/TR/2006/WD-sawsd|-20060928/

John, H., G., Mark, A., M., Ray, W., F., William,,E>., Monica, C., Henrik, E., Natalya, F., N., & Sson, W.,

T., (2003). The evolution of protégé: an environment foowkedge-based systems development.
International Journal of Human-Computer Studies, 58(1), 89-123.

Jos D., B., Holger, L., Axel, P., Dieter, F. (2006). b service modeling language WSML: An overview. In
Y. Sure and J. Domingue (Eds.), Proceeding&’d@opean Semantic Web Conference, Volume 4011 (pp.
590-604). Budava, Montenegro.

Jun, S., Georg, G., Yun, Y., Markus, S., Michael, S.oriths, R. (2006). Analysis of business process
integration in web service context. In The InternaioJournal of Grid Computing: Theory, Models and
Applications, 23 (3), 283-294.

Jun, S., Yun, Y., Chengang, W., & Chuan, Z. (2005). FromBME to OWL-S: Integrating E-business
process descriptions. In Proceedings of InternationalfeCence on Services Computing, Volumépp.
181-190), Orland, FL, USA.

Massimo, P., Naveen, S., Katia, P., S., & Takuyg2803). Towards a semantic choreography of web services:
From WSDL to DAML-S. In L. Zhang, (Ed.), Proceedingstb& International Conference on Web
Services (pp. 22-26), Las Vegas, Nevada, USA.

Matjaz J., Benny, M., & Poornachandra, S. (2004). BusiRescess Execution Language for Web Services: A
Practical Guide to Orchestrating Web Services UsingLBRES. PACKT Publishing.

Matthew, H., Holger, K., Alan, R., Robert, S., & @hW. (2004). A practical guide to building owl ontologies
using the protege-owl plugin and co-ode tools edition 1.0.Urheersity of Manchister, UK and Stanford
University, USA.

Nigel, S., Tim, B., & Wendy, H. (2006). The semantic welisited. IEEE Intelligent Systems, 21(3),96-101.

Peter, F., P., (2005). Requirements and non-requiremerdsstemantic web rule language. In Rule Languages
for Interoperability.

Satish, T. (2001). XLANG web services for business pmocgssign. Retrieved May®1 2007, from
http://xml.coverpages.org/XLANG-C-200106.html

Sinuhe, A., Emilia, C., John, D., Cristina, F., [BretF., Birgitta, K., Holger, L., Axel, P., & Michaeh. Web
service modeling ontology primer (2005). Retrieved June 12, 200rom f
http://mww.w3.org/Submission/WSMO-primer/.

